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Abstract

Two examples are described to illustrate the use of the MSwM package.
First, a simulated dataset is modeled in detail. Next, Markov Switching
Models are fitted to a real dataset with a discrete response variable. The
main methods and graphical representations are used to validate different
approaches to model these datasets.

1 Simulated Example

The example data is a simulated data set to show how msmFit can detect the
presence of two different regimes: one in which the response variable is highly
correlated and other in which the response only depends on an exogenous vari-
able x. The autocorrelated observations are in the intervals 1 to 100, 151 to 180
and 251 to 300. The real models for each regime are:

84 2m, W eV~ N(0,1)  ¢=101:150,181 : 250
! 1409y 1+ ? ~ N(0,05) t=1:100,151: 180,251 : 300

> data(example)

The plot in Fig.1 shows that in the intervals where does not exist autocorrelation
the response variable y has a similar behaviour as the covariant x. A linear model
is fitted to study how the covariate x explains the variable response y.

> mod=1m(y~x,example)
> summary (mod)

Call:
Im(formula = y ~ x, data = example)

Residuals:
Min 1Q Median 3Q Max
-2.8998 -0.8429 -0.0427 0.7420 4.0337



> plot(ts(example))
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Figure 1: Simulated data. The y variable is the response variable and there are
two periods in which this depends on the x covariate

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept)  9.0486 0.1398 64.709 < 2e-16 **x*
X 0.8235 0.2423 3.398 0.00077 **x
Signif. codes: O 'xxx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.208 on 298 degrees of freedom
Multiple R-squared: 0.03731, Adjusted R-squared: 0.03408
F-statistic: 11.55 on 1 and 298 DF, p-value: 0.0007701

The covariate is really significant but the data behaviour is very bad explained by
the model. The plot of the linear model residuals in Fig.1 indicates that their
autocorrelation is significant. The diagnostics plots for the residuals (Fig.2)
confirm that they does not seem to be white noise and that they have autocor-
relation. Next, a Autoregressive Markov Switching Model (MSM-AR) is fitted
to the data. The order for the autoregressive part is set to one. In order to
indicate that all the parameters can be different in both periods, the switch-
ing parameter (sw) is set to a vector with four components with value equal
to TRUE. The last value when fitting a linear model is referred to the residual
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Figure 2: Normal Probability plot and Autocorrelation Function of the residuals
from the linear model

standard deviation. There are some options to control the estimation process,
like a logical parameter to indicate whether parallelization of the process is done
or not.

> mod.mswm=msmFit (mod,k=2,p=1,sw=c (TRUE, TRUE, TRUE, TRUE) , control=1ist (parallel=FALSE))
> summary (mod.mswm)

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(TRUE, TRUE, TRUE, TRUE), p = 1,
control = list(parallel = FALSE))

AIC BIC logLik
637.0736 693.479 -312.5368

Coefficients:
Regime 1

Estimate Std. Error t value Pr(>ltl)
(Intercept) (S) 0.8417 0.3025 2.7825 0.005394 x**
x(8) -0.0533 0.1340 -0.3978 0.690778
y_1(S) 0.9208 0.0306 30.0915 < 2.2e-16 *x*
Signif. codes: O 'xxx' 0.001 '«x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5034675
Multiple R-squared: 0.8375

Standardized Residuals:
Min Q1 Med Q3 Max
-1.5153666657 -0.0906543311 0.0001873641 0.1656717256 1.2020898986



Regime 2

Estimate Std. Error t value Pr(>|tl)

(Intercept) (S) 8.6393 0.7244 11.9261 < 2.2e-16 ***

x(8) 1.8771 0.3107 6.0415 1.527e-09 ***
y_1(S) -0.0569 0.0797 -0.7139 0.4753

Signif. codes: O 'xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9339683
Multiple R-squared: 0.2408

Standardized Residuals:
Min Q1 Med Q3 Max
-2.31102193 -0.03317756 0.01034139 0.04509105 2.85245598

Transition probabilities:
Regime 1  Regime 2

Regime 1 0.98499728 0.02290884

Regime 2 0.01500272 0.97709116

The model mod.mswm has a regime where the covariant x is very significant and
in the other regime the autocorrelation variable is very significant too. In both,
the R-squared have high values. Finally, the transition probabilities matrix has
high values which indicate that is difficult to change from on regime to the
other. The model detect perfectly the periods of each state. The residuals look
like to be white noise and they fit to the Normal Distribution. Moreover, the
autocorrelation has disappeared.

> plotProb(mod.mswm,which=1)
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Figure 3: Residuals form the Autoregressive MSM model
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Figure 5: Filtered and Smoothed Probabilities for both regimes in the MSM-AR
model
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Figure 4: Normal Probability plot and Autocorrelation Function of the residuals
from the Complete MSwM model. They are obtained by using the plotDiag
method

> plotProb(mod.mswm, which=2)
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Figure 6: Response variable indicating which observations are associated to
regime 1

The graphics show that the periods for each regime have been detected perfectly.



> plotReg(mod.mswm, expl="x")
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Figure 7: Relationship between x and y locating the two regimes

2 Daily Traffic Casualties by car accidents in Spain

The traffic data (Fig.8) contains the daily number of deaths in traffic accidents
in Spain during the year 2010, the average daily temperature and the daily sum
of precipitations. The interest of this data is to study the relation between
the number of deaths with the climate conditions. We illustrate the use of a
Generalized Markov Switching Model in this case because there exists a different
behaviour between the variables during weekends and working days. To avoid a
long example, the explanations of how the functions work and repeated results
are skipped.

In this example, the response variable is a counting variable. For this reason
we fit a Poisson Generalized Linear Model.

> model=glm(NDead Temp+Prec,traffic,family="poisson")
> summary (model)

Call:
glm(formula = NDead ~ Temp + Prec, family = "poisson", data = traffic)
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Figure 8: Traffic data: Daily traffic casualties in Spain and climate variables

Deviance Residuals:
Min 1Q Median 3Q Max
-3.1571 -1.0676 -0.2119 0.8080 3.0629

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 1.1638122 0.0808726 14.391 < 2e-16 **x*

Temp 0.0225513 0.0041964 5.374 7.7e-08 x**x*
Prec 0.0002187 0.0001113 1.964  0.0495 *
Signif. codes: O 'xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 597.03 on 364 degrees of freedom
Residual deviance: 567.94 on 362 degrees of freedom
AIC: 1755.9

Number of Fisher Scoring iterations: 5

In the next step, the Markov Switching Model is fitted using msmFit. To fit a
Generalized Markov Switching Model, the family parameter has to be included.
Moreover, the glm’s don’t have the standard deviation parameter and, because



of this, the sw parameter doesn’t contain its switching parameter.

> ml=msmFit (model,k=2,sw=c (TRUE, TRUE, TRUE) ,family="poisson", control=1list (parallel=FALSE))
> summary (m1)

Markov Switching Model

Call: msmFit(object = model, k = 2, sw = c(TRUE, TRUE, TRUE), family = "poisson",
control = list(parallel = FALSE))

AIC BIC loglik
1713.878 1772.676 -850.9388

Coefficients:
Regime 1

Estimate Std. Error t value Pr(>ltl)
(Intercept) (S) 0.7649 0.1755 4.3584 1.31e-05 **x
Temp (S) 0.0288 0.0082 3.5122 0.0004444 *%x
Prec(S) 0.0002 0.0002 1.0000 0.3173105
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Regime 2

Estimate Std. Error t value Pr(>|tl)
(Intercept) (S) 1.5659 0.1576 9.9359 < 2e-16 *x**
Temp (S) 0.0194 0.0080 2.4250 0.01531 =*
Prec(S) 0.0004 0.0002 2.0000 0.04550 =*
Signif. codes: O 'xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Transition probabilities:
Regime 1 Regime 2

Regime 1 0.7287732 0.4913893

Regime 2 0.2712268 0.5086107

Both states have significant covariates, but the precipitation covariate is only
significant in one of the two.

> intervals(ml1)

Aproximate intervals for the coefficients. Level= 0.95

(Intercept):

Lower Estimation Upper
Regime 1 0.4208398 0.7648733 1.108907
Regime 2 1.2569375 1.5658582 1.874779
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Figure 9: Residuals form the Autoregressive MSM model

linear model validation.

> plotProb(m1,which=2)

9 are calculated from an object of class
"MSM.glm’ because the model is an extension of a General Linear Model. The
residuals have the classical structure of white noise. The residuals aren’t au-
tocorrelated but they don’t fit very well to a Normal Distribution. However,
normality of the Pearson residuals is not a critical condition for generalized
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Figure 10: Normal Probability plot and Autocorrelation Function of the resid-
uals from the Autoregressive MSwM model. They are obtained by using the
plotDiag method
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Figure 11: Response variable indicating which observations are associated to
regime 1

Using the function plotProb we can see how the regimes are distributed in
shorts periods because the bigger one contains basically working days.



