Package ‘R.AlphA.Home’

February 11, 2025
Type Package

Title Feel at Home using R, Thanks to Shortcuts Functions Making it
Simple

Version 1.0.0

Description A collection of personal functions designed to simplify and streamline common R pro-
gramming tasks. This package provides reusable tools and shortcuts for frequently used calcula-
tions and workflows.

License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2

Imports data.table, lubridate, rstudioapi, stringr, grDevices,
openxlsx, ggplot2, dplyr, tibble, tidyr, R.utils, shinyWidgets,
shiny, magrittr

NeedsCompilation no

Author Raphaél Flambard [aut, cre],
Adrien Cocuaud [ctb]

Maintainer Raphaél Flambard <r.alpha.act@outlook. fr>
Repository CRAN
Date/Publication 2025-02-11 09:20:02 UTC

Contents
cols_pad e e 2
COMPArEVALS . . . o v o i e 3
countSwitches L e e e 4
foldAlIBr e 5
importAll L 6
left_join_checks e 7
Ium_0_100 e e e e e e 9
quickSave e 9
rdate L e e e 10
ret_lum . ..o e 11

2 cols_pad

TOOL o o o o e e e e e e e 12
sepThsd e e 12
shiny_lum_0_100 e 13
HMET o oo o e e e e e 13
Index 15
cols_pad Add Variables to ease data usage in a Pivot Table
Description

Adds dummy columns to reach the number specified by the user. this is mostly useful to ensure
straightforward and easy data updating when using pivot tables in Excel. It allows replacement of
the previous data sheet by the new one, without having to take care about the number of columns,
which will always be the same.

Usage

cols_pad(data, nCols = 100, colPrefix = "x_")

Arguments
data The data frame to which dummy columns will be added.
nCols the total number of columns required : default is 100
colPrefix A string used as the prefix for the names of dummy columns.
Value

A data frame with the specified total number of columns.

Examples

table <- data.frame(a = 1:5, b = letters[1:5])
extraTable <- cols_pad(table, nCols = 6, colPrefix = "extra_")
print(extraTable)

compare Vars 3

compareVars Compare Table Variables

Description

Compares column names in two tables based on a given pattern. Provides information about which
columns are present in which tables.

Usage
compareVars(x, y, pattern = "")
Arguments
X A data frame representing the first table.
y A data frame representing the second table.
pattern A string pattern used to filter and compare only a subset of variables (column
names).
Value

A list containing:

e all: All column names from both tables.

* common: Column names found in both tables.

* onlyX: Column names found only in the first table (x).

* onlyY: Column names found only in the second table (y).

* exclusive: Column names found in only one of the two tables.

Examples

Example tables
tablel <- data.frame(exclusive_1 = 1:5, common_1 = 6:10, common_2 = 11:15)
table2 <- data.frame(common_1 = 16:20, common_2 = 21:25, exclusive_2 = 26:30)

Compare all columns (no pattern given)
compare_all <- compareVars(tablel, table2)
compare_all$common

compare_all$exclusive

compare_all$onlyX

compare_all$onlyY

compare only columns following a specific pattern
compare_wPattern <- compareVars(tablel, table2, pattern = "1")
compare_wPattern$all

compare_wPattern$common

countSwitches

countSwitches create an incremented Counter, based on Start/Stop Markers

Description

This function aims at identifying sections and sub-sections numbers, based on markers of section
starts and ends.

Given a data frame, and the name of a column giving the start/stop markers, it will add columns
giving infos about the successive section levels

Usage
countSwitches(
data,
colNm,
sttMark,
endMark,
includeStt = TRUE,
includeEnd = TRUE
)
Arguments
data A data frame containing the column to process.
colNm A string specifying the column name in ‘data‘ to evaluate.
sttMark A value indicating the start of a series.
endMark A value indicating the end of a series.
includeStt Logical. Should the start marker be included as part of the series? Default is
‘TRUE".
includeEnd Logical. Should the end marker be included as part of the series? Default is
‘TRUE".
Value

A modified version of the input data frame with additional columns including:

e ‘catLvl‘: The current series level calculated as the difference between the cumulative counts
of start and end markers.

e ‘Ivl_1°, “lvl_2°, ‘lvl_3": Final series counts returned for each respective level.

Note

This function is currently mostly useful internally, to perform foldAlIBr().

foldAlIBr

Examples

example code
library(dplyr)
tribble(

~step

, "start”

, "content of section 1"
, "start”

, "subsection 1.1"

, "end”

, "end”

, "out of any section”
, "start”

, "section 2"

, "start”

, "subsection 2.1"

, "end”

, "start”

, "subsection 2.2"

, "end”

, "end”

) %>%
countSwitches(colNm = "step”, "start”, "end")

foldAllBr Easily Fold Code Parts

Description

This function works with code split into parts identified by brackets. The format is as follows:

code from part 1

} # part 1
{

} # part 2
It automatically identifies parts to fold/unfold easily.
Shortcuts required:

* "fold all brackets": shift + alt + S (Windows) / ctrl + shift + up (Mac)
 "expand fold": shift + alt + D (Windows) / ctrl + shift + down (Mac)

Usage
foldAllBr(time

Arguments

time

debug_getTbl

Value

A list containing:

importAll

FALSE, debug_getTbl = FALSE)

Logical. If ‘TRUE®, the function will return ggplot object visualizing execution
times for each step.

Logical. If ‘TRUE’, returns the ‘docContent‘ table with tags for debugging
purposes.

* debug_info: A data frame with debugging information if debug_getTbl = TRUE.

* timer_plot: A ggplot object visualizing execution times if time = TRUE.

If both parameters are FALSE, the function returns a list with NULL values.

importAll

Function to Import and Concatenate Multiple data files

Description

Imports multiple files into a list, concatenates them into a single table, and adds an ‘fName* variable.

The files can be selected either by giving a file list (character vector), or by specifying a pattern.

Usage

importAll(
path = n H’
pattern = ""
ignore.case

importFunction

fill = FALSE

’

FALSE,
NULL,

’

fileList = NULL

Arguments

path
pattern
ignore.case

importFunction

fill
filelList

Path to the directory, passed to ‘list.files".
Pattern to match file names, passed to ‘list.files*.

Logical. If “TRUE®, ignores case when matching file names. Passed to ‘list.files".
Default behavior is case-sensitive (‘FALSE®)

A custom function for importing files. If not set, the function selects an import
method based on the file extension.

Logical. Passed to ‘rbind‘ to allow filling missing columns.
A character vector of file names to import (used instead of ‘pattern*).

left_join_checks 7

Value

A data frame containing the concatenated table with the fName column

Examples

Directory containing test files
test_path <- tempdir()

Create test files

write.csv(data.frame(a = 1:3, b = 4:6) , file.path(test_path, "filel.csv"))
write.csv(data.frame(a = 7:9, b = 10:12) , file.path(test_path, "file2.csv"))
write.csv(data.frame(a = 3:5, b = 8:10) , file.path(test_path, "file3.csv"))
saveRDS(data.frame(a = 1:5, b = 6:10) , file.path(test_path, "filel.rds"))
saveRDS(data.frame(a = 11:15, b = 16:20), file.path(test_path, "file2.rds"))

Example 1 : Import all csv files
result <- importAll(path = test_path, pattern = "\\.csv$")
print(result)

Example 2: Import only selected files

file_list <- c("filel.csv", "file2.csv")

result <- importAll(path = test_path, filelList = file_list)
print(result)

Example 3: Import all .rds files
result <- importAll(path = test_path, pattern = "\\.rds$")
print(result)

Example 4: Use a custom import function
custom_import <- function(file) {
data <- read.csv(file, stringsAsFactors = FALSE)

return(data)
3
result <- importAll(path = test_path, pattern = "\\.csv$", importFunction = custom_import)
print(result)
left_join_checks Left Join with Validation Checks
Description

a custom usage of left_join, with more detailed checks. Performs a left join and verifies that no
unexpected duplicates or mismatches occur. In cas of unexpected results, gives details about what
caused the problem.

Usage

left_join_checks

left_join_checks(

X’
Y

’

reg_xAllMatch = 1,
reg_preserved_x =

T,

behavior = "error",

showNotFound
showProblems
time = FALSE

Arguments

X

y

regq_xAllMatch

reqg_preserved_x

behavior

showNotFound
showProblems

time

Value

= FALSE,
= TRUE,

A data.table representing the left table.

A data.table representing the right table.

Additional arguments passed to ‘dplyr::left_join*.

Logical. Ensure that all rows in ‘x* find a match in ‘y‘. Default: FALSE.

Logical. Ensure that the number of rows in ‘x‘ remains unchanged after the join.
Default: TRUE.

Character. Specifies behavior if validation fails. Options: ‘"warning"* or ‘"er-
ror"‘. (default: ‘"warning"*)

Logical. Show rows from ‘x‘ that did not match with ‘y‘. Default: FALSE.
Logical. Display the problems encountered during the joining process, if any.

Logical. Internal argument used only for testing purposes, timing the function
steps

A data.table containing the joined table.

Examples

library(data.table)

library(dplyr)

Example 1: Simple left join with all matches

table_left <- data.table(id = 1:3, value_left = c("A", "B", "C"))

table_right <- data.table(id = 1:3, value_right = c("X", "Y", "Z"))

result <- left_join_checks(table_left, table_right, by = "id"”, req_preserved_x = TRUE)
print(result) # Ensures all rows in table_left are preserved

Example 2: Left join with missing matches
table_left <- data.table(id = 1:5, value_left = c("A", "B", "C", "D", "E"))
table_right <- data.table(id = c(1, 3, 5), value_right = c("X", "Y", "Z"))

Ium_0_100 9

result <- left_join_checks(
table_left,
table_right,
by = "id",
reg_preserved_x = TRUE,
showNotFound = TRUE,
behavior = "warning”

)

print(result) # Rows from table_left with no matches in table_right are shown

lum_0_100 Adjust the Brightness of the Graphics Window for confortable viewing
when using ggplot2

Description

Modifies the brightness level of the active graphics window by adjusting its background color.

This is especially useful when using dark RStudio themes, where a 100 graphic window creates an
unconfortable contrast.

Usage

lum_0_100(lum = NULL)

Arguments
lum Numeric. Brightness level, ranging from 0 (completely dark) to 100 (maximum
brightness).
Value

no return value : only apply the theme_set() function

quickSave Save File in a Directory storing saves, prefixing it with current date

Description

Saves a file with current date in its name in a sub directory located in the same directory as the
original file. Optionally, a note is added after the file name.

10

Usage

quickSave(
saveDir,

rdate

filePath = NULL,

saveNote

overwrite

verbose

Arguments

saveDir

filePath

saveNote

overwrite

verbose

Value

NULL,
FALSE,
FALSE

Choose the directory used to store saves. Suggested : "old’

Optional, if you want to save another file than the current one : full path of the
file you want to save.

An optional custom note to append to the file name for the save, allowing to
keep track of why this save has been done.

Logical. Should an existing save with the same name be overwritten? Default is
‘FALSE".

logical. If turned to ‘“TRUE®, the save path is displayed

the output value of the function used to copy file

rdate

Generate Random Dates, with a similar usage as the r* functions

Description

Generates a vector of random dates within a specified range. This function tries to replicate the
usage of the r* functions from stats package, such as runif(), rpois(), ...

Usage

rdate(
X,

min = paste@(format(Sys.Date(), "%Y"), "-01-01"),
max = paste@(format(Sys.Date(), "%Y"), "-12-31"),

sort = FALSE,
include_hours

= FALSE

ret_lum 11

Arguments
X Integer. Length of the output vector (number of random dates to generate).
min Date. Optional. The minimum date for the range. Defaults to the 1st of January
of the current year.
max Date. Optional. The maximum date for the range. Defaults to the 31st of De-
cember of the current year.
sort Logical. Should the dates be sorted in ascending order? Default is ‘FALSE".

include_hours Logical. Should the generated dates include time? Default is ‘FALSE‘ (dates
only). this will slow down the function
Value

A vector of random dates of length ‘x*.

Examples

Generate 5 random dates between two specific dates, sorted
rdate(5, min = as.Date("2020-01-01"), max = as.Date("2020-12-31"), sort = TRUE)

Generate 7 random datetime values (with hours)
rdate(7, include_hours = TRUE)

ret_lum Adjust the Brightness of a Hex Color

Description

Modifies the brightness of a color by multiplying its RGB components by a specified factor.

Mostly for internal usage inside lum_0_100 function.

Usage

ret_lum(hexCol, rgbFact)

Arguments
hexCol Character. The color to adjust, specified in hexadecimal format (e.g., "#FF5733").
rgbFact Numeric. The luminosity factor : - use a factor between 0 and 1 to decrease
luminosity - use a factor >1 to increase it The final Brightness value will be
maintained between 0 and 1.
Value

A modified hex color in hexadecimal format.

12 sepThsd

Examples

Example 1: Lightening a color
ret_lum("#FF5733", 1.5) # Returns a lighter version of the input color

Example 2: Darkening a color
ret_lum("#FF5733", 0.7) # Returns a darker version of the input color

root Get Root Directory of Current Source File

Description

Returns the directory path where the current source code file is located.

It is especially useful when the same source code is used by multiple users, each using his own
environment, with different file paths.

the aim is to avoid writing full paths in raw text inside source codes.

Usage

root()

Value

A character string representing the absolute path of the directory containing the current source file.

sepThsd Quick Number Formatting with Custom Defaults

Description

A wrapper for the ‘format‘ function, designed to format numbers with custom defaults for thousands
separator, number of significant digits, and scientific notation.

Usage
sepThsd(x, big.mark = " ", digits = 1, scientific = FALSE)
Arguments
X Numeric. The input values to format.
big.mark Character. The separator for thousands (e.g., " "* for "1 000" or “","* for
"1,000"). Default is " "*.
digits Integer. The number of significant digits to display. Default is ‘1°.
scientific Logical. Should the numbers be displayed in scientific notation? Default is

‘FALSE".

shiny_Ium_0_100 13

Value

A character vector of formatted numbers.

Examples

Format with a comma as a thousands separator and 3 significant digits
sepThsd(1234567.89, big.mark = ",", digits = 3)

Use scientific notation

sepThsd(1234567.89, scientific = TRUE)

shiny_lum_0_100 Set Shiny Background and Sidebar Colors to a Chosen Shade of Grey

Description

Adjust the background color of a Shiny app’s main body and sidebar based on a specified luminosity
level.

The purpose is the same as lum_0_100() function, avoiding problems with high contrast between
with graphic windows and dark themes.

Usage

shiny_lum_0_100(1lum)

Arguments

lum Numeric. Luminosity level, ranging from O (black) to 100 (white).

Value

The HTML tags for setting the background and sidebar colors.

timer allow organized tracking of R code execution time

Description
The ‘timer* function allows you to append timeStamps to a data.table, and include additional meta-
data provided as arguments. The last call calculates time differences between timeStamps.

Usage

timer(timer_table = data.table(), end = FALSE, ...)

14

timer

Arguments

timer_table A data.table containing the timer log to continue from. Defaults to an empty

end

Value

‘data.table().

A logical, inidicating the end of the timer, defaulted to FALSE. ’timer()’ calls
must be placed at the beginning of each part : therefore, this ’closing’ step is
necessary to compute time for the last part. Time differences between timeS-
tamps are calculated only when closing the timer.

Additional specifications. Use named arguments to provide documentation on
the code parts you are timing : naming the current step, the version of the code
you are trying, or any other useful specification

A ‘data.table‘ containing the original data, plus one new timeStamp, and optionally computed time
differences :

‘timeStamp*: The current timeStamp (‘POSIXct*).

‘timeStamp_num‘: timeStamp converted to numeric, useful for intermediary calculations.
‘dt_num‘: The time difference in seconds between consecutive rows as a numeric value.
‘dt_text‘: The formatted time difference in seconds with milliseconds as a character string.

Additional columns for any information provided by the user via “...“. It allows documentation
about the current step running, substeps, which version is being tested, ...

Examples

compare code speed between using a loop, or the mean() function
library(data.table)

library(dplyr)
tmr <- data.table() # Initialize timer
vec <- rnorm(1e6) # Example vector

tmr <- timer(tmr, method = "loop”) # timeStamp : 1st step

total <- @
for (i in seq_along(vec)) total <- total + vec[i]
mean_loop <- total / length(vec)

tmr <- timer(tmr, method = "mean()") # timeStamp : 1st step

mean_func <- mean(vec)

tmr <- timer(tmr, end = TRUE) # timeStamp : close timer ==============
t_stepl <- tmr[method == "loop"]$dt_num
t_step2 <- tmr[method == "mean()"]1$dt_num

diff_pc <- (t_step2/t_stepl - 1) * 100
diff_txt <- format(diff_pc, nsmall = @, digits = 1)

view speed difference
print(tmr %>% select(-matches("_num$")))
pasted("speed difference : ", diff_txt, "%")

Index

cols_pad, 2
compareVars, 3
countSwitches, 4

foldAllBr, 5
importAll, 6

left_join_checks, 7
lum_0_100,9

quickSave, 9

rdate, 10
ret_lum, 11
root, 12

sepThsd, 12
shiny_lum_0_100, 13

timer, 13

15

	cols_pad
	compareVars
	countSwitches
	foldAllBr
	importAll
	left_join_checks
	lum_0_100
	quickSave
	rdate
	ret_lum
	root
	sepThsd
	shiny_lum_0_100
	timer
	Index

