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additivecheck Additive check

Description

This function checks if the given game is additive.

Usage

additivecheck(v, binary = FALSE, instance = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

instance A logical value. By default, instance=FALSE.

Details

A game v ∈ GN is additive if v(S) =
∑

i∈S v(i) for all S ∈ 2N .

Value

TRUE if the game defined by v is additive, FALSE otherwise. If instance=TRUE and the game
is not additive, the position (binary order position if binary=TRUE; lexicographic order position
otherwise) of a coalition for which additivity is violated is also returned.

See Also

additivegame, superadditivecheck

Examples

v <- c(1, 5, 40, 100, 6, 41, 101, 45, 105, 140, 46, 106, 141, 145, 146)
additivecheck(v)
additivecheck(v, binary = TRUE, instance = TRUE)
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additivegame Additive game

Description

Given the value of each player, this function returns the characteristic function of the associated
additive game.

Usage

additivegame(a, binary = FALSE)

Arguments

a A vector containing the player values.

binary A logical value. By default, binary=FALSE.

Details

The characteristic function of the additive game given by a ∈ Rn is defined for each S ∈ 2N by
v(S) =

∑
i∈S ai.

Value

The characteristic function of the associated additive game, as a vector in binary order if binary=TRUE
and in lexicographic order otherwise.

See Also

additivecheck, strategicallyequivalentcheck, superadditivecheck

Examples

a <- c(1,5,10,13,58)
additivegame(a, binary = FALSE)
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airfieldgame Airfield game

Description

Given an airfield problem, this function returns the associated airfield game.

Usage

airfieldgame(c, binary = FALSE)

Arguments

c A vector of costs defining the airfield problem.

binary A logical value. By default, binary=FALSE.

Details

Let N = {1, . . . , n} denote a set of agents, and let c ∈ RN
+ be a cost vector. Each ci represents

the cost of the service required by agent i. Segmental costs are defined as the difference between a
given cost and the first immediately lower cost: ci − ci−1 for i ∈ N\{1}.

Each c ∈ RN
+ defines an airfield problem, which is associated to an airfield game va ∈ GN , is

defined by
va(S) = max{cj : j ∈ S} for all S ∈ 2N .

Airfield games, as defined, are cost games, but they can also be expressed as savings games. Ad-
ditional tools and methods for addressing airfield problems are available in the AirportProblems
package Bernárdez Ferradás et al. (2025).

Value

The characteristic function of the airfield game, as a vector in binary order if binary=TRUE and in
lexicographic order otherwise.

References

Bernárdez Ferradás, A., Sánchez Rodríguez, E., Mirás Calvo, M., & Quinteiro Sandomingo, C.
(2025). AirportProblems: Analysis of Cost Allocation for Airport Problems. R package version
0.1.0. https://CRAN.R-project.org/package=AirportProblems

Littlechild, S.C., & Owen, G. (1973). A Simple Expression for the Shapely Value in a Special Case.
Management Science, 23, 370-372.

See Also

claimsgame, savingsgame

https://CRAN.R-project.org/package=AirportProblems
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Examples

c <- c(2000,3200,4100,5100)
airfieldgame(c,binary=TRUE)

balancedcheck Balanced check

Description

This function checks if the given game is balanced and computes its balanced cover.

Usage

balancedcheck(v, game = FALSE, binary = FALSE, tol = 100 * .Machine$double.eps)

Arguments

v A characteristic function, as a vector.

game A logical value. By default, game=FALSE. If set to TRUE, the balanced cover of
the game is also returned.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

Let v ∈ GN . A family F of non-empty coalitions of N is balanced if there exists a weight fam-
ily δF = {δFS }S∈F such that δFS > 0 for each S ∈ F and

∑
S∈F δFS e

S = eN , being eS the
characteristic vector of S, that is, the vector (eSi )i∈N in which eSi = 1 if i ∈ S and eSi = 0 if
i /∈ S).

The game v is balanced if, for each balanced family F , it is true that∑
S∈F

δFS v(S) ≤ v(N).

The balanced cover of v is the game ṽ defined by ṽ(S) = v(S) for all S ̸= N and

ṽ(N) = max
δ∈P

∑
S⊂N

δSv(S),

being P the set of the weight families associated with the balanced families of N .

A game is balanced if and only if it coincides with its balanced cover. By the Bondareva-Shapley
Theorem, a game has a non-empty core if and only if it is balanced.
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Value

TRUE if the game is balanced, FALSE otherwise. If game=TRUE, the balanced cover of the game is
also returned.

References

Maschler, M., Solan, E., & Zamir, S. (2013). Game Theory. Cambridge University Press.

See Also

totallybalancedcheck

Examples

balancedcheck(c(12,10,20,20,50,70,70), game=TRUE)
balancedcheck(c(rep(0,4), rep(30,6), rep(0,4), 50))
v <- runif(2^3-1,0,10) # random three-player game
balancedcheck(v, game=TRUE)
balancedcheck(balancedcheck(v, game=TRUE)$game) # balanced cover is indeed balanced
balancedcheck(runif(2^(15)-1,min=10,max=20)) # random game

balancedfamilycheck Balanced family check

Description

This function checks if the given family is balanced.

Usage

balancedfamilycheck(Fam, n = NULL, tol = 100 * .Machine$double.eps)

Arguments

Fam A vector containing the binary order positions of a family of coalitions.

n The number of players in the set of players from which Fam is taken. When not
specified, n is assumed to be the the number of players present in Fam.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

A family F of non-empty coalitions of a set of players N is balanced if there exists a weight
family δF = {δFS }S∈F such that δFS > 0 for each S ∈ F and

∑
S∈F δFS e

S = eN , being eS the
characteristic vector of S, that is, the vector (eSi )i∈N in which eSi = 1 if i ∈ S and eSi = 0 if i /∈ S).

A balanced family F is said to be minimal if there does not exist a balanced family F ′ such that
F ′ ⊊ F .
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Value

This function returns three outputs: check, minimal and delta. If Fam is not a balanced family:
check=FALSE and both minimal and delta are NULL. If Fam is a balanced family: check=TRUE,
minimal=TRUE if Fam is minimal (minimal=FALSE otherwise), and delta returns an associated
weight family.

References

Maschler, M., Solan, E., & Zamir, S. (2013). Game Theory. Cambridge University Press.

See Also

balancedcheck, kohlbergcriterion, totallybalancedcheck

Examples

balancedfamilycheck(c(3,6,13,8)) # balanced and minimal
balancedfamilycheck(c(3,5,9,4,8,14)) # balanced but not minimal
balancedfamilycheck(c(1,2,4,12,13)) # not balanced

belong2corecheck Belong to core

Description

This function checks if an allocation belongs to the core of a game.

Usage

belong2corecheck(v, binary = FALSE, x, instance = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

x An allocation, as a vector.

instance A logical value. By default, instance=FALSE.

Details

The core of a game v ∈ GN is the set of all its stable imputations:

C(v) = {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N},

where x(S) =
∑

i∈S xi.
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Value

TRUE if x belongs to the core of v, FALSE otherwise. If instance=TRUE and x does not belong to
the core of v, a justification is also provided: if efficiency is violated, not efficient is returned; if
efficiency is not violated, the position (binary order position if binary=TRUE; lexicographic order
position otherwise) of a coalition for which rationality is violated is returned.

References

Gillies, D. (1953). Some theorems on n-person games. PhD thesis, Princeton, University Press
Princeton, New Jersey.

Examples

v <- c(0, 0, 0, 2, 1, 4, 6)
a <- c(3, 1, 2) # an allocation for v
b <- c(2, 2, 2) # egalitarian solution for v
belong2corecheck(v = v, binary = TRUE, x = a, instance = TRUE)
belong2corecheck(v = v, binary = FALSE, x = b, instance = TRUE)

# What if the game is a cost game?
cost.v <- c(2,2,2,3,4,4,5) # cost game
cost.x <- c(1,2,2) # core allocation of cost.v
belong2corecheck(v = -cost.v, x = -cost.x)

bin2lex Binary order to lexicographic order

Description

Given a characteristic function in binary order, this function returns the characteristic function in
lexicographic order.

Usage

bin2lex(v)

Arguments

v A characteristic function, as a vector in binary order.

Details

The binary order position of a coalition S ∈ 2N is given by
∑

i∈S 2i−1. Lexicographic order
arranges coalitions in ascending order according to size, and applies lexicographic order to break
ties among coalitions of the same size.

Value

The characteristic function, as a vector in lexicographic order.
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See Also

codebin2lex, codelex2bin, lex2bin

Examples

v <- seq(1:31)
bin2lex(v)
lex2bin(bin2lex(v))==v

claimsgame Pessimistic claims game associated with a claims problem

Description

Given a claims problem, this function returns the associated pessimistic claims game.

Usage

claimsgame(E, d, binary = FALSE)

Arguments

E An endowment, as a positive number.

d A vector of claims.

binary A logical value. By default, binary=FALSE.

Details

A claims problem is a triple (N,E, d) where E ≥ 0 is an amount to be distributed among a set N
of agents and d ∈ R|N | is a vector of claims satisfying

∑n
i=1 di ≥ E.

Given a claims problem (N,E, d), its associated claims game, vE,d ∈ GN , is defined by

vE,d(S) = max{0, E −
∑

i∈N\S

di} for all S ∈ 2N .

For further analysis and computational methods related to conflicting claims problems, see the
ClaimsProblems package Sánchez Rodríguez et al. (2025).

Value

The characteristic function of the pessimistic claims game, as a vector in binary order if binary=TRUE
and in lexicographic order otherwise.
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References

O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical Social Sciences,
2, 345–371.

Sánchez Rodríguez, E., Núñez Lugilde, I., Mirás Calvo, M., & Quinteiro Sandomingo, C. (2025).
ClaimsProblems: Analysis of Conflicting Claims. R package version 1.0.0.

https://CRAN.R-project.org/package=ClaimsProblems

See Also

airfieldgame

Examples

E <- 10
d <- c(2,4,7,8)
claimsgame(E,d)

coalitionweightedshapleyvalue

Coalition-weighted Shapley value

Description

Given a game and a weight family, this function returns the coalition-weighted Shapley value.

Usage

coalitionweightedshapleyvalue(v, delta, binary = FALSE, game = FALSE)

Arguments

v A characteristic function, as a vector.

delta A weight family. It can be introduced in two different ways: as a non-negative
vector whose length is the number of coalitions (thus specifying all coalition
weights) or as a non-negative vector whose length is the number of players (thus
specifying the weights of single-player coalitions and implying that the rest of
weights are 0). In any case, if the introduced weights do not add up to 1, the
weight family is computed by normalization.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v and delta
(assuming delta was introduced by specifying all coalition weights; otherwise
there is no difference) are introduced in binary order instead of lexicographic
order.

game A logical value. By default, game=FALSE. If set to TRUE, the coalition-weighted
game is also returned.

https://CRAN.R-project.org/package=ClaimsProblems
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Details

A weight family is a collection of 2|N | − 1 real numbers δ = {δT }T∈2N\∅ such that δT ⩾ 0 for
each T ∈ 2N \ ∅ and

∑
T∈2N\∅ δT = 1. For each v ∈ GN and each T ∈ 2N , the T-marginal game

of v, denoted vT ∈ GN , is defined as

vT (S) = v(S ∪ (N \ T ))− v(N \ T ) + v(S ∩ (N \ T )), S ∈ 2N .

For each game v ∈ GN and each weight family δ, the δ-weighted game vδ ∈ GN is defined as

vδ =
∑

T∈2N\∅

δT v
T .

Given a game v ∈ GN , its δ-weighted Shapley value, Φδ(v), is the Shapley value of the δ-weighted
game:

Φδ(v) = Sh(vδ).

Value

The coalition-weighted Shapley value, as a vector. If game=TRUE, the coalition-weighted game is
also returned, as a vector in binary order if binary=TRUE and in lexicographic order otherwise.

References

Sánchez Rodríguez, E., Mirás Calvo, M. A., Quinteiro Sandomingo, C., & Núñez Lugilde, I. (2024).
Coalition-weighted Shapley values. International Journal of Game Theory, 53, 547-577.

See Also

marginalgame, shapleyvalue, weightedshapleyvalue

Examples

v <- c(0,0,0,0,0,0,1,0,0,1,3,4,6,8,10)
delta <- c(0.3,0.1,0,0.6,0,0,0,0,0,0,0,0,0,0,0)
coalitionweightedshapleyvalue(v, delta, binary=TRUE)

v <- c(0,0,0,0,0,0,0,0,1,4,1,3,6,8,10)
delta <- c(0.25,0.25,0.25,0.25)
a <- coalitionweightedshapleyvalue(v, delta, game=TRUE)
b <- coalitionweightedshapleyvalue(a$game, delta, game=TRUE)
c <- coalitionweightedshapleyvalue(b$game, delta, game=TRUE)
plotcoresets(rbind(v, a$game, b$game, c$game), imputations=FALSE)

# Games a, b and c have the same Shapley value:
all(sapply(list(a$value, b$value, c$value, shapleyvalue(v)),

function(x) all.equal(x, a$value) == TRUE))
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codebin2lex Binary order position to lexicographic order position

Description

Given the binary order position of a coalition, this function returns the corresponding lexicographic
order position.

Usage

codebin2lex(n, Nbin)

Arguments

n Number of players, as an integer.

Nbin A binary order position, as an integer between 1 and 2n − 1.

Details

The binary order position of a coalition S ∈ 2N is given by
∑

i∈S 2i−1. Lexicographic order
arranges coalitions in ascending order according to size, and applies lexicographic order to break
ties among coalitions of the same size.

Value

The corresponding lexicographic order position, as an integer between 1 and 2n − 1.

See Also

bin2lex, codelex2bin, lex2bin

Examples

codebin2lex(5, 4)

codelex2bin Lexicographic order position to binary order position

Description

Given the lexicographic order position of a coalition, this function returns the corresponding binary
order position.

Usage

codelex2bin(n, Nlex)
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Arguments

n Number of players.

Nlex A lexicographic order position, as an integer between 1 and 2n − 1.

Details

Lexicographic order arranges coalitions in ascending order according to size, and applies lexico-
graphic order to break ties among coalitions of the same size. The binary order position of a coali-
tion S ∈ 2N is given by

∑
i∈S 2i−1.

Value

The corresponding binary order position, as an integer between 1 and 2n − 1.

See Also

bin2lex, codebin2lex, lex2bin

Examples

codelex2bin(5, 4)

compromiseadmissiblecheck

Compromise-admissible check

Description

This function checks if the given game is compromise-admissible.

Usage

compromiseadmissiblecheck(v, binary = FALSE, instance = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

instance A logical value. By default, instance=FALSE.
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Details

Let v ∈ GN . The utopia payoff of player i ∈ N is defined as Mi(v) = v(N) − v(N\i). The
minimal right of player i ∈ N is defined as mi(v) = maxS:i∈S(v(S)−

∑
j∈S\i Mj(v)).

The game v ∈ GN is said to be compromise-admissible if its core-cover is not empty, that is, if the
following conditions hold:

1) m(v) ≤ M(v).

2)
∑

i∈N mi(v) ≤ v(N) ≤
∑

i∈N Mi(v).

Value

TRUE if the game is compromise-admissible, FALSE otherwise. If instance=TRUE and {i ∈ N :
mi(v) > Mi(v)} ≠ ∅, one of the players in that set is also returned.

Examples

compromiseadmissiblecheck(c(0,0,0,0,10,40,30,60,10,20,90,90,90,130,160))
compromiseadmissiblecheck(c(1,2,2), instance=TRUE)

# What if the game is a cost game?
cost.v <- c(30, 20, 50, 40, 60, 60, 75) # compromise-admissible cost game
compromiseadmissiblecheck(-c(30, 20, 50, 40, 60, 60, 75))

constantsumgame Constant sum game

Description

This function computes the characteristic function of the specified constant sum game.

Usage

constantsumgame(halfv, vN)

Arguments

halfv The first half (according to lexicographic or binary order) of the characteristic
function (excluding the grand coalition), as a vector.

vN The utility of the grand coalition.

Details

A game v ∈ GN is a constant sum game if, for each S ∈ 2N , v(S) + v(N \ S) = v(N). Thus, if
v is a constant sum game and F is a family of 2n−1 − 1 coalitions such that S ∪ T ̸= N for any
S, T ∈ F , the full characteristic function of v is strictly determined by the utilities of the coalitions
in F and the utility of the grand coalition.
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Value

The characteristic function of the constant sum game. It is to be interpreted according to the order
that halfv is introduced in.

Examples

constantsumgame(c(0,0,0), 1) # the dollar game
# Building a random constant sum game:
players <- sample(3:6,1) # random number of players between three and six
halfv <- runif(2^(players-1)-1, 0, 10) # random halfv
vN <- runif(1,30,50) # random vN
constantsumgame(halfv, vN)

convexcheck Convex check

Description

This function checks if the given game is convex.

Usage

convexcheck(v, binary = FALSE, instance = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

instance A logical value. By default, instance=FALSE.

Details

A game v ∈ GN is convex if v(S ∩ T ) + v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N . Zumsteg,
S. (1995) shows that v is convex if v(S ∪ i ∪ j) + v(S) ≥ v(S ∪ i) + v(S ∪ j) for all S ∈ 2N and
i, j ∈ N\S such that i ̸= j.

A game v ∈ GN is concave if −v is convex.

Value

TRUE if the game is convex, FALSE otherwise. If instance=TRUE and the game is not convex,
the function also returns the positions (binary order positions if binary=TRUE; lexicographic order
positions otherwise) of a pair of coalitions violating the Zumsteg convexity characterization.

References

Zumsteg, S. (1995). Non-cooperative aspects of cooperative game theory and related computa-
tional problems. PhD thesis, ETH Zurich.
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See Also

strategicallyequivalentcheck, superadditivecheck

Examples

v1 <- c(5, 2, 2, 1, 8, 8, 6, 4, 3, 3, 12, 10, 10, 6, 14)
convexcheck(v1)
v2 <- c(0, 0, 0, 2, 2, 1, 3)
convexcheck(v2, binary = FALSE, instance = TRUE)

# How to check if a game is concave:
v.conc <- c(4, 3, 3, 2, 6, 6, 5, 5, 4, 4, 7, 6, 6, 6, 7) # concave game
convexcheck(-v.conc)

corecenterhitrun Core-center estimation by hit-and-run

Description

Given a game with a full-dimensional core, this function computes a hit-and-run estimation of its
core center.

Usage

corecenterhitrun(v, k = 1000, getpoints = FALSE, binary = FALSE)

Arguments

v A characteristic function of a game with, as a vector.

k The number of points to be generated by the hit-and-run method, as an integer.
By default, k=1000.

getpoints A logical value. By default, getpoints=FALSE. If set togetpoints=TRUE, the
points generated by the hit-and-run method are also returned, as a matrix in
which each row is a point.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

The core of a game v ∈ GN is the set of all its stable imputations:

C(v) = {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N},

where x(S) =
∑

i∈S xi. A game is said to be balanced if its core is not empty.

The core-center of a balanced game v, CC(v), is defined as the expectation of the uniform distri-
bution over C(v), and thus can be interpreted as the centroid or center of gravity of C(v). Let µ be
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the (n − 1)-dimensional Lebesgue measure and let V (C) = µ(C(v)) be the volume (measure) of
the core. If V (C) > 0, then, for each i ∈ N ,

CCi(v) =
1

V (C)

∫
C(v)

xidµ

.

The hit-and-run method (Smith, 1984) is a Monte Carlo algorithm that generates uniformly dis-
tributed random points within a bounded and convex region, such as a polytope or a convex body in
high-dimensional space.

The hit-and-run method is based on the following process. Step 0: choose a point inside the convex
body. Step 1: choose a uniformly distributed random direction from the unit sphere in the given
dimension. Step 2: determine the longest line segment that, starting from the chosen point and
taking the chosen direction, remains entirely within the convex body. Step 3: choose a uniformly
distributed along the line segment random point. Step 4: go to Step 1.

Value

A hit-and-run estimation of the core-center, as a vector; and, if getpoints=TRUE, a matrix contain-
ing the points generated by the hit-and-run method.

References

Gonzalez-Díaz, J. & Sánchez-Rodríguez, E. (2007). A natural selection from the core of a TU
game: the core-center. International Journal of Game Theory, 36(1), 27-46.

Espinoza-Burgos, N. H. (2020). Comparación de métodos exactos y aproximados para calcular el
core-center del juego del aeropuerto. TFM, Máster en Técnicas Estadísticas, http://eio.usc.
es/pub/mte/descargas/ProyectosFinMaster/Proyecto_1791.pdf.

Smith, R. L. (1984). Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed
Over Bounded Regions. Operations Research, 32(6), 1296-1308.

See Also

balancedcheck, corecentervalue, coredimension, corevertices, corevertices234

Examples

v1 <- claimsgame(E=8,d=c(3,5,6))
corecenterhitrun(v1,k=1e5)

v2 <- c(0,0,0,0,0,0,0,0,1,4,1,3,6,8,10)
corecenterhitrun(v2,k=1e5)

# Plotting the corecenter and its hit-and-run estimation:
plotcoreset(v2,solutions="corecenter",allocations=corecenterhitrun(v2))

# Plotting the points generated by the hit-and-run method:
hrpoints <- corecenterhitrun(v2,k=100,getpoints=TRUE)$points
plotcoreset(v2,allocations=hrpoints)

http://eio.usc.es/pub/mte/descargas/ProyectosFinMaster/Proyecto_1791.pdf
http://eio.usc.es/pub/mte/descargas/ProyectosFinMaster/Proyecto_1791.pdf
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# What if the game is not full-dimensional because of a dummy player?
v3 <- c(440,0,0,0,440,440,440,15,14,7,455,454,447,60,500)
# For coredimension to detect that, tolerance has to be appropriate:
coredimension(v3,tol=100*.Machine$double.eps) # tolerance too small
coredimension(v3) # default tolerance, 1e-12, big enough

# Now how to compute the hit-and-run estimation of the core-center?
# Knowing that player 1 is a dummy and that the core-center assigns
# dummies their individual worth...
v3.without1 <- subgame(v3,S=14) # subgame without player 1
( cc.hr <- c(v3[1],corecenterhitrun(v3.without1,k=100)) )

# Plotting the points when there is a dummy player:
points.without1 <- corecenterhitrun(v3.without1,k=100,getpoints=TRUE)$points
points.with1 <- cbind(v3[1],points.without1)
plotcoreset(v3,allocations=points.with1)

# This function does not work if the core is not full-dimensional:
v4 <- c(0,0,0,0,2,5,0,5,0,0,10,2,5,5,10)
corecenterhitrun(v4,k=1e5)

corecentervalue Core-center

Description

Given a game, this function computes its core center.

Usage

corecentervalue(v, binary = FALSE, tol = 1e-12)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number. By default, tol=1e-12.

Details

The core of a game v ∈ GN is the set of all its stable imputations:

C(v) = {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N},

where x(S) =
∑

i∈S xi. A game is said to be balanced if its core is not empty.

The core-center of a balanced game v, CC(v), is defined as the expectation of the uniform distri-
bution over C(v), and thus can be interpreted as the centroid or center of gravity of C(v). Let µ be
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the (n − 1)-dimensional Lebesgue measure and let V (C) = µ(C(v)) be the volume (measure) of
the core. If V (C) > 0, then, for each i ∈ N ,

CCi(v) =
1

V (C)

∫
C(v)

xidµ

.

Value

The core-center, as a vector.

References

Gonzalez-Díaz, J. & Sánchez-Rodríguez, E. (2007). A natural selection from the core of a TU
game: the core-center. International Journal of Game Theory, 36(1), 27-46.

See Also

balancedcheck, corecenterhitrun, coredimension, corevertices, corevertices234

Examples

v1 <- claimsgame(E=8,d=c(3,5,6))
corecentervalue(v1)
plotcoreset(v1,solutions="corecenter")

v2 <- c(0,0,0,0,0,0,0,0,1,4,1,3,6,8,10)
corecentervalue(v2)
plotcoreset(v2,solutions="corecenter")

# What if the game is not full-dimensional because of a dummy player?
v3 <- c(440,0,0,0,440,440,440,15,14,7,455,454,447,60,500)
dummynull(v3) # player 1 is a dummy in v3, so the core is degenerate
# For coredimension to detect that, tolerance has to be appropriate:
coredimension(v=v3,tol=100*.Machine$double.eps) # tolerance too small
coredimension(v=v3) # default tolerance, 1e-12, big enough

# Now how to compute the corecenter?
# When given a degenerate game, corecentervalue computes an approximation:
( cc.approx <- corecentervalue(v=v3) ) # approximate core-center
# However, knowing that player 1 is a dummy and that the core-center assigns
# dummies their individual worth...
v3.without1 <- subgame(v=v3,S=14) # subgame without player 1
( cc.exact <- c(v3[1],corecentervalue(v3.without1)) ) # "exact" core-center

# Plotting both results:
plotcoreset(v3,allocations=rbind(cc.approx,cc.exact),projected=TRUE)
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coredimension Core dimension

Description

Given a game, this function computes the dimension of its core.

Usage

coredimension(v, binary = FALSE, tol = 1e-12)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

The core of a game v ∈ GN is the set of all its stable imputations:

C(v) = {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N},

where x(S) =
∑

i∈S xi.

Value

The dimension of the core of v, as an integer.

References

Edgeworth, F. Y. (1881). Mathematical psychics: An essay on the application of mathematics to the
moral sciences. CK Paul.

Gillies, D. (1953). Some theorems on n-person games. PhD thesis, Princeton, University Press
Princeton, New Jersey.

See Also

balancedcheck, corevertices, corevertices234, plotcoreset, plotcoresets
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Examples

v1 <- c(rep(0,5),rep(1,4),0,rep(1,3),2,2)
plotcoreset(v1)
coredimension(v1)

v2 <- c(rep(0,5),rep(1,4),0,rep(1,4),2)
plotcoreset(v2)
coredimension(v2)

v3 <- marginalgame(c(0,0,0,0,0,0,0,0,1,4,1,3,6,8,10),1)
plotcoreset(v3)
coredimension(v3)

v4 <- c(0,0,0,0,0,0,0,0,1,4,1,3,6,8,10)
plotcoreset(v4)
coredimension(v4)

corevertices Core vertices

Description

Given a game, this function computes its core vertices.

Usage

corevertices(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

The core of a game v ∈ GN is the set of all its stable imputations:

C(v) = {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N},

where x(S) =
∑

i∈S xi.

Value

If the core of v is non-empty, the core vertices are returned, as a matrix in which each row is a
vertex.
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Note

Function corevertices234 can also compute the core vertices of games with less than five players,
but takes a different approach.

References

Edgeworth, F. Y. (1881). Mathematical psychics: An essay on the application of mathematics to the
moral sciences. CK Paul.

Gillies, D. (1953). Some theorems on n-person games. PhD thesis, Princeton, University Press
Princeton, New Jersey.

See Also

balancedcheck, corevertices234, plotcoreset, plotcoresets

Examples

v=c(0,0,0,0,0,0,0,0,1,4,1,3,6,8,10)
corevertices(v)

# What if the game is a cost game?
cost.v <- c(2,2,2,3,4,4,5) # cost game
-corevertices(-cost.v) # core vertices of the cost game

corevertices234 Core vertices of games with two, three or four players

Description

Given a game with no more than four players, this function computes its core vertices.

Usage

corevertices234(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

The core of a game v ∈ GN is the set of all its stable imputations:

C(v) = {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N},

where x(S) =
∑

i∈S xi.
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Value

If the core of v is non-empty, the core vertices are returned, as a matrix in which each row is a
vertex.

Note

Function corevertices can also compute the core vertices of games with less than five players,
but takes a different approach.

See Also

balancedcheck, corevertices, plotcoreset,

Examples

# 2 players:
corevertices234(c(-58,4,13))

# 3 players:
corevertices234(c(1,5,10,6,11,15,16)) # additive game

# 4 players:
corevertices234(c(0,0,0,0,4,3,5,2,4,5,10,19,20,30,100)) # convex game
corevertices234(c(0,0,0,0,1,2,1,1,1,1,4,3,2,1,7)) # not convex game

# What if the game is a cost game?
cost.v <- c(2,2,2,3,4,4,5) # cost game
-corevertices234(-cost.v) # core vertices of the cost game

degeneratecheck Degenerate check

Description

This function checks if the given game is degenerate.

Usage

degeneratecheck(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

A game v ∈ GN is degenerate if v(N) =
∑

i∈N v(i).



26 dualgame

Value

TRUE if the game is degenerate, FALSE otherwise.

See Also

essentialcheck

Examples

v <- c(1, 5, 10, 0, 0, 0, 16)
degeneratecheck(v)
w <- c(1, 5, 10, 0, 0, 0, 15)
degeneratecheck(w)

dualgame Dual game

Description

Given the characteristic function of a game, this function returns the characteristic function of the
dual game.

Usage

dualgame(v)

Arguments

v A characteristic function, as a vector.

Details

The dual game of v ∈ GN is defined by vD(S) = v(N)− v(N\S) for all S ∈ 2N .

Value

The characteristic function of the dual game. It is to be interpreted according to the order that v is
introduced in.

Examples

v <- c(rep(0,4),rep(5,6),rep(20,4),40)
dualgame(v)
v <- seq(1:31)
dualgame(v)
dualgame(dualgame(v)) == v
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dummynull Dummy and null players

Description

Given a game, this function identifies its dummy players and null players.

Usage

dummynull(v, binary = FALSE, tol = 100 * .Machine$double.eps)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

Given a game v ∈ GN , i ∈ N is said to be a dummy player if v(S) + v({i}) = v(S ∪ {i}) for all
S ⊂ N \ {i}.

A dummy player i ∈ N is said to be a null player if v({i}) = 0.

Value

Two different vectors are returned: one containing the dummy players and the other containing the
null players.

Examples

v <- c(0,1,0,1,0,1,1)
dummynull(v)
# Checking if a particular player is a dummy player:
2 %in% dummynull(v)$dummy # player 2 is a dummy player in v
2 %in% dummynull(v)$null # player 2 is not a null player in v
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essentialcheck Essential check

Description

This function checks if the given game is essential.

Usage

essentialcheck(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

A game v ∈ GN is essential if its set of imputations is non-empty, that is, if v(N) ≥
∑

i∈N v(i).

Value

TRUE if the game is essential, FALSE otherwise.

See Also

degeneratecheck

Examples

v <- c(0, 0, 0, 2, 3, 4, 1)
essentialcheck(v, binary = TRUE)
essentialcheck(v, binary = FALSE)

# What if the game is a cost game?
cost.v <- c(2,2,2,3,4,4,5) # essential cost game
essentialcheck(-cost.v)
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excesses Coalition excesses

Description

Given a game and an allocation, this function computes the excess of each coalition.

Usage

excesses(v, binary = FALSE, x)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

x An allocation, as a vector.

Details

Given a game v ∈ GN and an allocation x, the excess of coalition S ∈ 2N with respect to x is
defined as e(x, S) = v(S)− x(S), where x(S) =

∑
i∈S xi.

Value

The excesses of all coalitions, as a vector in binary order if binary=TRUE and in lexicographic order
otherwise.

See Also

nucleolusvalue, nucleoluspcvalue

Examples

excesses(v=c(0,0,3,0,3,8,6,0,6,9,15,8,16,17,20), binary=TRUE, x=c(8,7,2,3))
excesses(v=c(1,5,10,6,11,15,16), x=c(1,5,10)) <= 0 # core allocation



30 getcoalition

getcoalition Get coalition

Description

This function returns the players that form the coalition whose binary order position coincides with
the given integer.

Usage

getcoalition(num)

Arguments

num A binary order position of a coalition, as an integer.

Details

A coalition S ∈ 2N can be represented by the n-digit binary number s1 . . . sn in which si = 1 if
i ∈ S and si = 0 otherwise. The binary order position of a coalition S ∈ 2N is given by

∑
i∈S 2i−1.

Value

The players that form the coalition whose binary order position is the given integer, as a vector.

See Also

codebin2lex, codelex2bin, getcoalitionnumber

Examples

num <- 5
getcoalition(num)
n <- 4
for (i in 1:(2^n - 1)){

cat("[", i, "]", paste(getcoalition(i)),"\n")
}
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getcoalitionnumber Get coalition number

Description

This function returns the binary order position of the coalition formed by the given players.

Usage

getcoalitionnumber(S)

Arguments

S The players forming the coalition, as a vector.

Details

A coalition S ∈ 2N can be represented by the n-digit binary number s1 . . . sn where si = 1 if i ∈ S
and 0 otherwise. The binary order position of a coalition S ∈ 2N is given by

∑
i∈S 2i−1.

Value

The binary order position of the coalition formed by the given players.

See Also

codebin2lex, codelex2bin, getcoalition

Examples

N <- c(1:5)
S <- c(1, 2, 3)
getcoalitionnumber(S)
n <- length(N) # number of players
NS <- setdiff(N,S) # complementary coalition
getcoalitionnumber(S) + getcoalitionnumber(NS) == 2^n - 1
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getpermutation Get permutation

Description

Given a number of players and a position, this function returns the permutation of players that
occupies the given position when permutations are arranged according to the Lehmer code.

Usage

getpermutation(n, pos)

Arguments

n Number of players, as an integer.

pos Position according to the Lehmer code, as an integer.

Details

The Lehmer code makes use of the fact that there are n! permutations of a sequence of n numbers.
If a permutation σ is specified by the sequence (σi)

n
i=1, its Lehmer code is the sequence L(σ) =

(L(σ)i)
n
i=1, where L(σ)i = |{j > i : σj < σi}|.

The position of permutation σ according to the Lehmer code order is

Lσ = 1 +

n∑
i=1

(n− i)!L(σ)i

.

Value

The permutation of n players whose Lehmer code position is pos, as a vector.

See Also

getpermutationnumber

Examples

getpermutation(4, 5)
n <- 4
for (i in 1:factorial(n)) {

cat("[", i, "]", paste(getpermutation(n,i)), "\n")
}
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getpermutationnumber Get permutation number

Description

Given a permutation, this function returns its position in the Lehmer code order.

Usage

getpermutationnumber(permutation)

Arguments

permutation A permutation, as a vector.

Details

The Lehmer code makes use of the fact that there are n! permutations of a sequence of n numbers.
If a permutation σ is specified by the sequence (σi)

n
i=1, its Lehmer code is the sequence L(σ) =

(L(σ)i)
n
i=1, where L(σ)i = |{j > i : σj < σi}|.

The position of permutation σ according to the Lehmer code order is

Lσ = 1 +

n∑
i=1

(n− i)!L(σ)i

.

Value

The position of the permutation according to the Lehmer code order, as an integer.

See Also

getpermutation

Examples

getpermutationnumber(c(1, 2, 5, 4, 3))
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harsanyidividend Harsanyi dividend

Description

This function computes the Harsanyi dividend of the given coalition in the given game.

Usage

harsanyidividend(v, S, binary = FALSE)

Arguments

v A characteristic function, as a vector.

S The position of a coalition, as an integer.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v and S are
introduced according to binary order instead of lexicographic order.

Details

The Harsanyi dividends of v ∈ GN are the coordinates of the game in the base of unanimity games.
They are defined, for all S ∈ 2N , by

cS =
∑
S′⊂S

(−1)|S|−|S′|v(S′)

.

Value

The Harsanyi dividend of the coalition that occupies the given position in the given order.

References

Hammer, P.J., Peled, U.N., & Sorensen, S. (1977). Pseudo-boolean function and game theory I.
Core elements and Shapley value. Cahiers du Centre d’Etudes de Recherche Opérationnelle, 19,
156-176.

See Also

unanimitygame
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Examples

n <- 3
v <- c(1, 5, 10, 7, 11, 15, 16) # introduced in lexicographic order

coalitionsvector<-character()
dividendsvector<-numeric()

for (i in 1:(2^n-1)){
coalitionsvector <- c(coalitionsvector,

paste(getcoalition(i)[getcoalition(i) != 0],collapse = " "))
dividendsvector <- c(dividendsvector,

harsanyidividend(v, codelex2bin(n,i), binary = FALSE))
}

data.frame(Coalition = coalitionsvector, Dividend = dividendsvector)
data.frame(Coalition = bin2lex(coalitionsvector), Dividend = bin2lex(dividendsvector))

kohlbergcriterion Kohlberg criterion for the prenucleolus

Description

This function applies the Kohlberg criterion to check if the given efficient allocation is the prenu-
cleolus of the given game.

Usage

kohlbergcriterion(v, x, binary = FALSE, tol = 100 * .Machine$double.eps)

Arguments

v A characteristic function, as a vector.

x An efficient allocation, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

Given v ∈ GN and x ∈ Rn with
∑

i∈N xi = v(N), let k(x) be the number of different excesses in
x. According to the Kohlberg criterion for the prenucleolus, x is the prenucleolus of v if and only if,
for each j ∈ {1, . . . , k(x)},

⋃j
t=1 F

t is a balanced family, being F t the set of coalitions associated
with the excess that occupies position t when excesses are arranged in decreasing order.

Value

TRUE if x is the prenucleolus of v, FALSE otherwise.
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References

Kohlberg, E. (1971). On the Nucleolus of a Characteristic Function Game. SIAM Journal on
Applied Mathematics, 20(1), 62–66.

See Also

balancedfamilycheck, excesses, prenucleolusvalue

Examples

v <- c(0,0,0,0,10,40,30,60,10,20,90,90,90,130,160)
x <- prenucleolusvalue(v)
kohlbergcriterion(v, x) # x is the prenucleolus of v
y <- prenucleolusvalue(v) + c(1,-1,0,0)
kohlbergcriterion(v, y) # y is not the prenucleolus of v

# If the game is 0-monotonic, its nucleolus coincides with its prenucleolus,
# and therefore must pass the Kohlberg criterion for the prenucleolus:
v4 <- c(-2,-2,-2,7,7,7,6)
zeromonotoniccheck(v4)
kohlbergcriterion(v4, nucleolusvalue(v4))

leastcore Least core

Description

Given a game, this function computes its least core.

Usage

leastcore(v, binary = FALSE, tol = 100 * .Machine$double.eps)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

Given a game v ∈ GN and a number ε ∈ R, the ε-core of v is defined as

Cε(v) = {x ∈ Rn : x(N) = v(N) and x(S) ≥ v(S)− ε ∀S ∈ 2N \ {∅, N}},
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where x(S) =
∑

i∈S xi. The least core of v is defined as the intersection of all non-empty ε-cores
of v:

LC(v) = {
⋂

ε∈R : Cε(v)̸=∅

Cε(v)}.

The implementation of this function is based on the algorithm presented in Derks and Kuipers
(1997) and on the MATLAB package WCGT2005 by J. Derks.

Value

This function returns four outputs:

t The excess value that defines the least core.

sat The positions (binary order positions if binary=TRUE; lexicographic order posi-
tions otherwise) of the saturated coalitions, as a vector.

x A least core allocation, as a vector.

vt The game whose core is the least core of v, as a vector in binary order if
binary=TRUE and in lexicographic order otherwise.

References

Derks, J. & Kuipers, J. (1997). Implementing the simplex method for computing the prenucleolus
of transferable utility games.

Software by J. Derks (Copyright 2005 Universiteit Maastricht, dept. of Mathematics), available in
package MatTuGames,

https://www.shorturl.at/i6aTF.

See Also

excesses, nucleoluspcvalue, nucleolusvalue, prenucleolusvalue

Examples

v <- c(0,0,0,0,10,40,30,60,10,20,90,90,90,130,160)
( vt <- leastcore(v)$vt )
# Plotting the core and the least core of v:
plotcoresets(games = rbind(v,vt), imputations = FALSE)

# What if the game is a cost game?
cost.v <- c(2,2,2,3,4,4,5) # characteristic function of the cost game
-leastcore(-cost.v)$t # the excess value that defines the least core of cost.v
leastcore(-cost.v)$sat # the saturated coalitions
-leastcore(-cost.v)$x # a least core allocation
-leastcore(-cost.v)$vt # the cost game whose core is the least core of cost.v

https://www.shorturl.at/i6aTF
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lex2bin Lexicographic order to binary order

Description

Given a characteristic function in lexicographic order, this function returns the characteristic func-
tion in binary order.

Usage

lex2bin(v)

Arguments

v A characteristic function, as a vector in lexicographic order.

Details

Lexicographic order arranges coalitions in ascending order according to size, and applies lexico-
graphic order to break ties among coalitions of the same size. The binary order position of a coali-
tion S ∈ 2N is given by

∑
i∈S 2i−1.

Value

The characteristic function, as a vector in binary order.

See Also

bin2lex, codebin2lex, codelex2bin

Examples

v <- seq(1:31)
lex2bin(v)
bin2lex(lex2bin(v))==v

lorenzdominancerelation

Lorenz dominance relation

Description

Given two awards vectors, this function returns the Lorenz dominance relation between them.

Usage

lorenzdominancerelation(x, y)
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Arguments

x A vector.

y A vector.

Details

In order to compare two vectors x, y ∈ Rn through the Lorenz criterion, both of them must be
rearranged in non-decreasing order; thus, let x̄ and ȳ be the vectors obtained by rearranging x
and y, respectively, in non-decreasing order. It is said that x Lorenz-dominates y (or that y is
Lorenz-dominated by x) if all the cumulative sums of x̄ are not less than those of ȳ. That is, x
Lorenz-dominates y if

∑n
j=1 x̄j =

∑n
j=1 ȳj and, for each k = 1, . . . , n− 1,

k∑
j=1

x̄j ≥
k∑

j=1

ȳj .

If x Lorenz-dominates y and y Lorenz-dominates x, then x and y are said to be Lorenz-equal.

If x does not Lorenz-dominate y and y does not Lorenz-dominate x, then x and y are not Lorenz-
comparable.

Value

There are four possible outputs:

-1 if the introduced vectors are not Lorenz-comparable.

0 if the vectors are Lorenz-equal.

1 if the vectors are not Lorenz-equal and the first one Lorenz-dominates the second
one.

2 if the vectors are not Lorenz-equal and the second one Lorenz-dominates the
first one.

References

Lorenz, M. O. (1905). Methods of Measuring the Concentration of Wealth. Publications of the
American Statistical Association, 9(70), 209-219.

Examples

lorenzdominancerelation(c(1,2,3), c(1,1,4))
lorenzdominancerelation(c(1,2,7,2), c(1,1,4,6))
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marginalgame Marginal game

Description

Given a game and a coalition, this function returns the characteristic function of the corresponding
marginal game.

Usage

marginalgame(v, S, binary = FALSE)

Arguments

v Characteristic function, as a vector.

S The position of a coalition, as an integer.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v and S are
introduced according to binary order instead of lexicographic order.

Details

Given a game v ∈ GN and a coalition S ∈ 2N , the S-marginal game, vS ∈ GN , is defined by

vS(R) = v(R ∪ (N\S))− v(N\S) + v(R ∩ (N\S)) for all R ∈ 2N .

Value

The characteristic function of the S-marginal game, as a vector in binary order if binary=TRUE and
in lexicographic order otherwise.

References

Sánchez Rodríguez, E., Mirás Calvo, M.A., Quinteiro Sandomingo, C., & Núñez Lugilde, I. (2024).
Coalition-weighted Shapley values. International Journal of Game Theory 53, 547-577.

Examples

v <- c(0, 0, 0, 2, 3, 10, 20)
marginalgame(v, 5, binary = TRUE) # coalition {1,3}
n <- 3
for (i in 1:(2^n - 1)) {

cat("[", i, "]", paste(marginalgame(lex2bin(v),codebin2lex(n,i),binary=TRUE)),"\n")
}
for (i in 1:(2^n - 1)) {

cat("[", i, "]", paste(marginalgame(v,i)),"\n")
}
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marginalvector Marginal contributions vector

Description

Given a game and a permutation, this function returns the corresponding marginal contributions
vector.

Usage

marginalvector(v, binary = FALSE, permutation)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

permutation Position of the permutation in the Lehmer code order, as an integer.

Details

Given a game v ∈ GN and an order π of the players in N , the marginal contributions associated
with order π is defined, for all i ∈ N , as mπ

i = v(Preπ(i) ∩ i) − v(Preπ(i)), being Preπ(i) =
{j : π(j) < π(i)}.

Value

The vector of marginal contributions.

See Also

getpermutation, getpermutationnumber

Examples

n <- 3
v <- c(1, 5, 10, 30, 60, 90, 200)
for (i in 1:factorial(n)) {

cat("[", i, "]", paste(getpermutation(3,i))," ",
paste(marginalvector(v,binary=FALSE,i)), "\n")

}
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minimalrightsvector Minimal rights vector

Description

This function computes the minimal rights vector of a game.

Usage

minimalrightsvector(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

Given v ∈ GN , the utopia payoff of player i ∈ N is defined as Mi(N, v) = v(N)− v(N\i).

The minimal right of player i ∈ N is defined as mi(N, v) = maxS:i∈S(v(S)−
∑

j∈S\i Mj(N, v)).

Value

The minimal rights vector.

See Also

utopiapayoffsvector

Examples

v <- c(0, 0, 0, 1, 1, 1, 2)
minimalrightsvector(v)
convexcheck(v)
minimalrightsvector(v) == c(v[1],v[2],v[3])
w <- c(0,0,0,4,7,6,10)
convexcheck(w)
minimalrightsvector(w) == c(w[1],w[2],w[3])
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monotoniccheck Monotonic check

Description

This function checks if the given game is monotonic.

Usage

monotoniccheck(v, binary = FALSE, instance = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

instance A logical value. By default, instance=FALSE.

Details

A game v ∈ GN is monotonic if v(S) ≤ v(T ) for all S, T ∈ 2N such that S ⊂ T .

Value

TRUE if the game is monotonic, FALSE otherwise. If instance=TRUE and the game is not monotonic,
the function also returns the positions (binary order positions if binary=TRUE; lexicographic order
positions otherwise) of a pair of coalitions violating monotonicity.

See Also

additivecheck, superadditivecheck, zeromonotoniccheck

Examples

v <- c(0, 0, 1, 5, 1, 1, 2)
monotoniccheck(v, binary=FALSE, instance=TRUE)
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museumpassgame Museum pass game

Description

This function returns the characteristic function of the described museum pass game.

Usage

museumpassgame(V, p = rep(1, dim(V)[2]), binary = FALSE)

Arguments

V A matrix of zeros and ones where each row represents a museum and each col-
umn represents a visitor. If museum i is visited by visitor j, Vij = 1; otherwise,
Vij = 0.

p A vector containing the price that each visitor pays for their pass. By default, it
is a vector of ones.

binary A logical value. By default, binary=FALSE.

Details

Let N be a non-empty and finite set of museums and let U be a non-empty and finite set of visitors.
The museum matrix, V ∈ {0, 1}N×U , specifies which museums are visited by which visitors:
Vij = 1 if and only if museum i ∈ N is visited by visitor j ∈ U . The vector p ∈ R|U |+ represents,
for each visitor j, the price they pay for their museum pass (all passes are equal, in the sense that
they grant access to the same set of museums, but the price may not be the same for all visitors).

The total revenue is to be divided among the museums. Given a museum pass situation (N,U, V, p),
the museum pass game is defined by

v(S) =
∑

j∈U :Nj⊂S

pj for each coalition S ∈ 2N ,

where N j = {i ∈ N : Vij = 1} is the set of museums visited by j ∈ U .

Value

The characteristic function of the museum pass game, as a vector in binary order if binary=TRUE
and in lexicographic order otherwise.

References

Ginsburgh, V. & Zang, I. (2003). The museum pass game and its value. Games and economic
behavior, 43(2), 322-325.

Examples

V <- rbind(c(1,0,1,1,0), c(0,1,1,1,0), c(1,1,0,0,1), c(1,0,1,0,1))
museumpassgame(V, p=c(1,1,4,5,8))
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myersonvalue Myerson value

Description

Given a game and a communications network, this function computes the Myerson value.

Usage

myersonvalue(v, binary = FALSE, communications, game = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

communications An undirected communications network, as a list of vectors (their order being
irrelevant), each containing two different players (their order being irrelevant).
If two players are able to communicate with each other, a bidimensional vector
containing them should be present in the list; otherwise, the vector should be
absent. When communications is not specified, it is assumed that all players
can communicate with each other.

game A logical value. By default, game=FALSE. If set to TRUE, the game with restricted
communication is also returned.

Details

Let v ∈ GN . Assuming that communication between players is necessary for their cooperation,
the game with restricted communication, vA, is defined by vA(S) = v(S) if the players of S can
communicate and vA(S) = 0 otherwise, for each S ∈ 2N .

The Myerson value is the Shapley value of the game vA.

Value

The corresponding Myerson value, as a vector.

References

Myerson, R. B. (1977). Graphs and cooperation in games. Mathematics of Operations Research,
2(3), 225-229.

See Also

shapleyvalue
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Examples

v <- c(0,0,0,0,30,30,40,40,50,50,60,70,80,90,100)
communications <- list(c(1,2), c(1,3), c(1,4))
myersonvalue(v, binary=FALSE, communications)

normalizedgame Normalized game

Description

Given a game, this function returns the characteristic function of its 0-1-normalization, its 0-(-1)
normalization or its 0-0 normalization, as appropriate.

Usage

normalizedgame(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

A game v ∈ GN is: 0-1 normalized if v(i) = 0 for all i ∈ N and v(N) = 1; 0-0 normalized
if v(i) = 0 for all i ∈ N and v(N) = 0; and 0-(-1) normalized if v(i) = 0 for all i ∈ N and
v(N) = −1.

If v(N) >
∑

i∈N v(i), the 0-1 normalized game of v, v0,1 ∈ GN , is defined by

v0,1(S) =
v(S)−

∑
i∈S v(i)

v(N)−
∑

i∈N v(i)

for all S ∈ 2N .

If v(N) <
∑

i∈N v(i), the 0-(-1) normalized game of v, v0,−1 ∈ GN , is defined by

v0,−1(S) = −
v(S)−

∑
i∈S v(i)

v(N)−
∑

i∈N v(i)

for all S ∈ 2N .

If v(N) =
∑

i∈N v(i), the 0-0 normalized game of v, v0,0 ∈ GN , is defined by

v0,0(S) = v(S)−
∑
i∈S

v(i)

for all S ∈ 2N .
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Value

The characteristic function of the 0-1-normalized game, the 0-(-1) normalized game or the 0-0
normalized game; as a vector in binary order if binary=TRUE and in lexicographic order otherwise.

See Also

strategicallyequivalentcheck, zeronormalizedcheck, zeronormalizedgame

Examples

v <- c(1, 5, 11, 6, 11, 15, 16)
normalizedgame(v, binary = TRUE)
w <- c(4, 3, 8, 16, 17, 18, 15)
normalizedgame(w)
z <- c(2,3,5,10,12,14,5)
normalizedgame(z)

nucleoluspcvalue Per capita nucleolus

Description

Given a game, this function computes its per capita nucleolus.

Usage

nucleoluspcvalue(v, binary = FALSE, tol = 100 * .Machine$double.eps)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

Given a game v ∈ GN and an allocation x ∈ I(v), the per capita excess of each coalition S ∈ 2N

with respect to x is defined as

ep(v, x, S) =
v(S)−

∑
i∈S xi

|S|
.

The per capita excesses of all non-empty coalitions, sorted in non-increasing order, are stored in the
per capita excesses vector, θp(x). For any game v ∈ GN with a non-empty set of imputations, the
per capita nucleolus is defined as the only imputation pcn(v) ∈ I(v) that satisfies θp(pcn(v))i ⩽
θp(y)i for each i ∈ {1, . . . , 2N − 1} and for all y ∈ I(v). This function is programmed following
the algorithm of Potters, J.A., et al. (1996).
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Value

The per capita nucleolus of the game, as a vector.

References

Grotte, J. (1970). Computation of and Observations on the Nucleolus, the Normalized Nucleolus
and the Central Games. Master’s thesis), Cornell University, Ithaca.

Potters, J. A., Reijnierse, J. H., & Ansing, M. (1996). Computing the nucleolus by solving a
prolonged simplex algorithm. Mathematics of Operations Research, 21(3), 757-768.

See Also

excesses, leastcore, nucleolusvalue, prenucleolusvalue

Examples

nucleoluspcvalue(c(1,5,10,6,11,15,16))
nucleoluspcvalue(c(0,0,0,30,30,80,100))

# Computing the per capita nucleolus of a random essential game:
n <- 10 # number of players in the game
v <- c(rep(0,n),runif(2^n-(n+1),min=10,max=20)) # random essential game
nucleoluspcvalue(v)

# What if the game is a cost game?
cost.v <- airfieldgame(c(1,5,10,15)) # cost game
-nucleoluspcvalue(-cost.v) # per capita nucleolus of the cost game

nucleolusvalue Nucleolus

Description

Given a game, this function computes its nucleolus.

Usage

nucleolusvalue(v, binary = FALSE, tol = 100 * .Machine$double.eps)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.
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Details

Given a game v ∈ GN and an allocation x, the excess of coalition S ∈ 2N with respect to x is
defined as e(v, x, S) = v(S) − x(S), where x(S) =

∑
i∈S xi. By sorting the excesses of all

coalitions in non-increasing order, a 2|N |-tuple of complaints, denoted by θ(x), is obtained. Thus,
θi(x) ⩾ θj(x) for all i, j ∈ {1, 2, . . . , 2n − 1} with i < j.

The nucleolus can be computed through the following process. First, consider only the imputa-
tions that would minimize the first complaint, that is, find the set I1 = {x ∈ I(v) : θ1(x) ⩽
θ1(y) for all y ∈ I(v)}. Then, among those imputations, consider only those that would minimize
the second complaint, that is, find the set I2 = {x ∈ I1 : θ2(x) ⩽ θ2(y) for all y ∈ I1}. Repeat the
same operation with successive complaints. Eventually, a set I2|N| is reached. This is the nucleolus.

If v is essential, the nucleolus exists and comprises a single imputation: the only imputation η ∈
I(v) that satisfies e(η) ≤ e(x) (lexicographically) for all x ∈ I(v).

If the core of v is not empty, the nucleolus belongs to it.

This function is programmed following the algorithm of Potters, J.A., et al. (1996).

Value

The nucleolus of the game, as a vector.

References

Potters, J. A., Reijnierse, J. H., & Ansing, M. (1996). Computing the nucleolus by solving a
prolonged simplex algorithm. Mathematics of Operations Research, 21(3), 757-768.

Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on Applied
Mathematics, 17(6), 1163-1170.

See Also

excesses, leastcore, nucleoluspcvalue, prenucleolusvalue

Examples

v1 <- c(0,0,3,0,3,8,6,0,6,9,15,8,16,17,20)
nucleolusvalue(v1,binary=TRUE)

v2 <- c(0,0,0.7,0,0.4925,0.68,0.83,0,0.56,0.74,0.64,0.46,0.55,0.57,0.61,0,
0.35,0.56,0.72,0.8125,0.69,0.48,0.95,0.88,0.71,0.91,0.44,0.89,0.37,0.63,1)
nucleolusvalue(v2,binary=TRUE)

# Computing the nucleolus of a random essential game:
n <- 10 # number of players in the game
v3 <- c(rep(0,n),runif(2^(n)-(n+1),min=10,max=20)) # random essential game
nucleolusvalue(v3)

# If the game is 0-monotonic, its nucleolus coincides with its prenucleolus,
# and therefore must pass the Kohlberg criterion for the prenucleolus:
v4 <- c(-2,-2,-2,7,7,7,6)
zeromonotoniccheck(v4)
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kohlbergcriterion(v4,nucleolusvalue(v4))

# What if the game is a cost game?
cost.v <- c(2,2,2,3,4,4,5) # cost game
-nucleolusvalue(-cost.v) # nucleolus of the cost game

owenvalue Owen value

Description

Given a game and a partition of the set of players, this function computes the Owen value.

Usage

owenvalue(v, binary = FALSE, partition = NULL, game = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

partition A partition of the set of players, as a list of vectors. When not specified, it is
taken to be the partition whose only element is the set of all players.

game A logical value. By default, game=FALSE. If set to TRUE, the associated quotient
game is also returned.

Details

Let v ∈ GN and let C = {C1, . . . , Cm} be a partition of the set of players. For each T ∈ 2N \ ∅,
let R′

T = {j : Cj ∩ T ̸= ∅} and RT
j = Cj ∩ T for each j ∈ {1, . . . ,m}. Being cT the Harsanyi

dividend of coalition T ∈ 2N , the Owen value of each player i ∈ N is defined as

Oi(v, C) =
∑

T∈2N :j∈R′
T ,i∈RT

j

cT
|R′

T ||RT
j |

.

Value

The corresponding Owen value, as a vector; and, if game=TRUE, the associated quotient game, as a
vector in binary order if binary=TRUE and in lexicographic order otherwise.

References

Owen, G. (1977). Values of Games with a Priori Unions. In R. Henn and O. Moeschlin (Eds.),
Mathematical Economics and Game Theory (pp. 76-88), Springer.
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See Also

shapleyvalue, harsanyidividend

Examples

v <- c(0,0,0,0,30,30,40,40,50,50,60,70,80,90,100) # in lexicographic order
owenvalue(v, partition=list(c(1,3),c(2),c(4)))
owenvalue(v)
round(owenvalue(v),10) == round(shapleyvalue(v),10)
w <- c(0,0,0,0,0,10,10,20,10,20,10,20,10,20,10,20,40,20,40,20,40,

20,40,20,20,80,60,80,80,60,100) # in lexicographic order
owenvalue(w, partition=list(c(1,2,3),c(4,5)))

perfectcoregame Perfect core game

Description

This function returns the perfect core game with a given number of players.

Usage

perfectcoregame(n, binary = FALSE)

Arguments

n A number of players, as an integer.
binary A logical value. By default, binary=FALSE.

Details

The perfect core game of n players is defined by

vP (S) = s−
√

s(n− s)

n− 1
for all S ∈ 2N ,

where s = |S|.

Value

The characteristic function of the perfect core game with n players, as a vector in binary order if
binary=TRUE and in lexicographic order otherwise.

References

Shapley, L. S. (1971). Cores of convex games. International Journal of Game Theory, 1(3), 11-26.

Examples

perfectcoregame(6)
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plotcoreset Plot core set

Description

Given a game with two, three or four players, this function plots its core set and set of imputations.

Usage

plotcoreset(
v,
binary = FALSE,
imputations = TRUE,
projected = FALSE,
solutions = NULL,
allocations = NULL,
color = "blue"

)

Arguments

v A characteristic function, as a vector. The game represented by v is assumed to
be a profit game (i.e., a game in which a greater allocation is a more desirable
allocation), not a cost game (i.e., a game in which a smaller allocation is a more
desirable allocation).

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

imputations A logical value. By default, imputations=TRUE. When set to imputations=FALSE,
the set of imputations is not drawn.

projected A logical value. By default, projected=FALSE. When set to projected=TRUE,
for games with three or four players the function draws a projection of the core
set (and a projection of the set of imputations, as long as imputations=TRUE)
instead of a full-dimensional representation.

solutions Optional. A character vector containing a solution or a series of solutions to be
added to the plot. Valid solutions: "corecenter", "nucleolus", "nucleoluspc",
"shapleyvalue", "tauvalue".

allocations Optional. A matrix containing an allocation or a series of allocations to be added
to the plot. The matrix should have as many columns as players in v and as many
rows as allocations are introduced, so that each row contains an allocation.

color The color in which the core set is to be drawn. By default, color="blue".

Details

The core of a game v ∈ GN is the set of all its stable imputations:

C(v) = {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N},

where x(S) =
∑

i∈S xi.
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Value

A core set plot with the specified features.

See Also

plotcoresets

Examples

v1 <- claimsgame(E=8,d=c(3,5,6))
plotcoreset(v1,solutions=c("nucleolus","shapleyvalue"))

v2 <- c(0,0,0,0,0,0,0,0,1,4,1,3,6,8,10)
plotcoreset(v2,solutions=c("corecenter","nucleoluspc"))

plotcoresets Plot multiple core sets

Description

Given multiple games with two, three or four players, this function draws in a single plot their
projected core sets and sets of imputations.

Usage

plotcoresets(games, binary = FALSE, imputations = TRUE)

Arguments

games A matrix in which each row is a characteristic function.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if the char-
acteristic functions in games are introduced in binary order instead of lexico-
graphic order.

imputations A logical value. By default, imputations=TRUE. When set to imputations=FALSE,
the sets of imputations are not drawn.

Details

The core of a game v ∈ GN is the set of all its stable imputations:

C(v) = {x ∈ Rn : x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N},

where x(S) =
∑

i∈S xi.

Value

A plot of the given core sets.
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See Also

plotcoreset

Examples

# Plotting the core and the least core of a game:
v <- c(0,0,0,0,10,40,30,60,10,20,90,90,90,130,160)
vt <- leastcore(v)$vt
plotcoresets(games = rbind(v,vt), imputations = FALSE)

prenucleolusvalue Prenucleolus

Description

Given a game, this function computes its prenucleolus.

Usage

prenucleolusvalue(v, binary = FALSE, tol = 100 * .Machine$double.eps)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

Given a game v ∈ GN and an allocation x, the excess of coalition S ∈ 2N with respect to x is
defined as e(v, x, S) = v(S)−x(S), where x(S) =

∑
i∈S xi. Let θ(x) be a vector of excesses at x

arranged in non-increasing order. It is said that a vector α is lexicographically greater than another
vector β if α ̸= β and the first non-zero coordinate of vector α− β is positive.

The prenucleolus is the set of the efficient allocations that produce a lexicographically minimal
vector of excesses. It is always non-empty and it actually comprises a single allocation, which in
zero-monotonic games coincides with the nucleolus.

The implementation of this function is based on the algorithm presented in Derks and Kuipers
(1997) and on the MATLAB package WCGT2005 by J. Derks.

Value

The prenucleolus of the game, as a vector.



savingsgame 55

References

Derks, J. & Kuipers, J. (1997). Implementing the simplex method for computing the prenucleolus
of transferable utility games.

Schmeider, D. (1969). The Nucleolus of a Characteristic Function Game. SIAM Journal on Applied
Mathematics, 17(6), 1163–1170.

Software by J. Derks (Copyright 2005 Universiteit Maastricht, dept. of Mathematics), available in
package MatTuGames,

https://www.shorturl.at/i6aTF.

See Also

excesses, kohlbergcriterion, leastcore, nucleoluspcvalue, nucleolusvalue

Examples

prenucleolusvalue(c(0,0,0,0,10,40,30,60,10,20,90,90,90,130,160))
v <- runif(2^6-1, min = 10, max = 20) # random 6-player game
prenucleolusvalue(v)

# The prenucleolus of v must pass the Kohlberg criterion.
# In some cases, though, the tolerance might have to be adjusted
# to avoid numerical error:
kohlbergcriterion(v,prenucleolusvalue(v))
kohlbergcriterion(v,prenucleolusvalue(v),tol=10^(-6))

# What if the game is a cost game?
cost.v <- c(2,2,2,3,4,4,5) # cost game
-prenucleolusvalue(-cost.v) # prenucleolus of the cost game

savingsgame Savings game

Description

Given a cost game, this function returns the associated savings game.

Usage

savingsgame(c, binary = FALSE)

Arguments

c The characteristic function of a cost game, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if c is intro-
duced in binary order instead of lexicographic order.

https://www.shorturl.at/i6aTF
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Details

Let c ∈ GN be a cost game. Its associated savings game, vc ∈ GN , is defined by

vc(S) =
∑
i∈S

c(i)− c(S) for each S ∈ 2N .

Thus, for each coalition S, vc(S) can be interpreted as the collective reduction of cost resulting
from the cooperation of the members of S, with respect to the scenario of non-cooperation.

Value

The characteristic function of the savings game, as a vector in binary order if binary=TRUE and in
lexicographic order otherwise.

See Also

airfieldgame, zeronormalizedgame

Examples

savingsgame(c(360,60,288,390,468,318,468))
v.random <- rnorm(2^5-1,58,13)
savingsgame(v.random) == -zeronormalizedgame(v.random)

sequencinggame Sequencing game

Description

Given a sequencing situation with an initial order, this function returns the characteristic function
of the associated sequencing game.

Usage

sequencinggame(p, alpha, pi0, binary = FALSE)

Arguments

p A vector containing the processing time of each job.

alpha A vector containing the cost per unit of time that each job generates while un-
finished.

pi0 An initial order, as a vector.

binary A logical value. By default, binary=FALSE.
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Details

Given a coalition S ∈ 2N , Π(S) is the set of orders of S, that is, the set of all bijective functions
from S to {1, . . . , s}. A generic order of S is denoted by πS ∈ Π(S). Given i ∈ S and πS ∈ Π(S),
let Preπ(i) = {j ∈ S : πS(j) < πS(i)} be the set of predecessors of i according to order πS .

A sequencing situation is a triple (N, p, α) and, possibly, some (information on the) initial order,
where N = {1, . . . , n} is a finite set of agents, each one having one job that has to be processed
on a machine. To simplify, agent i’s job is identified with i. The processing times of the jobs are
given by p = (pi)i∈N with pi > 0 for all i ∈ N . For each agent i ∈ N there is a cost function
ci : (0,∞) → R, so that ci(t) represents the cost incurred when job i is completed exactly at time
t. Assuming that ci is linear for all i ∈ N , there exist αi, βi ≥ 0 such that ci(t) = βi + αit for all
i ∈ N , where βi is a fixed service cost and αit is the completion cost.

For any π ∈ Π(N), C(S, π) is the aggregate completion cost of coalition S in the order π, formally
defined as

C(S, π) =
∑
i∈S

αi

(
pi +

∑
j∈Preπ(i)

pj

)
.

A sequencing situation with initial order is a quadruple (N, p, α, π0) where π0 ∈ Π(N) is the initial
order of the jobs.

A coalition S ∈ 2N is said to be connected in order π if, for all i, j ∈ S and k ∈ N , π(i) <
π(k) < π(j) implies k ∈ S. We say that a coalition S′ is a component of S if S′ ⊂ S, S′

is connected, and for every i ∈ S\S′, S′ ∪ i is not connected. The components of S form a
partition of S that is denoted by S/π0. Curiel et al. (1989) define the gain of swapping i and j as
gij = max{0, αjpi − αipj}.

The sequencing game (N, vπ0
) is defined, for all S ∈ 2N , by

vπ0
(S) =

∑
S′∈S/π0

 ∑
i,j∈S′:π0(i)<π0(j)

gij

 .

Value

The characteristic function of the sequencing game (interpreted as a savings game), as a vector in
binary order if binary=TRUE and in lexicographic order otherwise.

References

Curiel, I., Pederzoli, G., & Tijs, S. (1989). Sequencing games. European Journal of Operational
Research, 40(3), 344-351.

See Also

tailgame

Examples

p <- c(1,2,3,4)
alpha <- c(4,5,1,2)
pi0 <- c(2,3,1,4)
sequencinggame(p, alpha, pi0)
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shapleyvalue Shapley value

Description

Given a game, this function computes its Shapley value.

Usage

shapleyvalue(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.
binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-

duced in binary order instead of lexicographic order.

Details

Given v ∈ GN , the Shapley value of each player i ∈ N can be defined as

Shi(v) =
∑

S⊂N\{i}

s!(n− s− 1)!

n!
(v(S ∪ {i})− v(S)).

It is also possible to compute it as

Shi(v) =
∑

∅̸=S⊂N

Mi,Sv(S),

where Mi,S = (s−1)!(n−s)!
n! if i ∈ S and Mi,S = − s!(n−s−1)!

n! if i /∈ S.

Value

The Shapley value of the game, as a vector.

References

Le Creurer, I. J., Mirás Calvo, M. A., Núñez Lugilde, I., Quinteiro Sandomingo, C., & Sánchez Ro-
dríguez, E. (2024). On the computation of the Shapley value and the random arrival rule. Available
at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4293746.

Shapley, L. S. (1953). A value for n-person games. Contribution to the Theory of Games, 2.

See Also

marginalvector

Examples

shapleyvalue(c(0,0,3,0,3,8,6,0,6,9,15,8,16,17,20), binary=TRUE)
shapleyvalue(claimsgame(E=69.420,d=runif(10,5,10)))

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4293746
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solidarityvalue Solidarity value

Description

Given a game, this function computes its solidarity value.

Usage

solidarityvalue(v, binary = FALSE, amc = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

amc A logical value. By default, amc=FALSE. If set to TRUE, the average marginal
contributions are also returned.

Details

Given v ∈ GN , the average marginal contribution to coalition S ∈ 2N is defined as

AMC(S) =
1

|S|
∑
k∈S

(v(S)− v(S\{k})).

The solidarity value of each player i ∈ N can be defined as

ϕi(v) =
∑
S:i∈S

(n− |S|)!(|S| − 1)!

|N |!
AMC(S).

Value

The solidarity value of the game, as a vector. If amc=TRUE, a vector (in binary order if binary=TRUE
and in lexicographic order otherwise) containing the average marginal contribution to each coalition
is also returned.

References

Nowak, A. S. & Radzik, T. (1994). A solidarity value for n-person transferable utility games.
International Journal of Game Theory, 23, 43-48.

See Also

shapleyvalue



60 solvels

Examples

solidarityvalue(c(0,0,0,1,1,1,2), binary=TRUE)
solidarityvalue(bin2lex(c(0,0,1,2,5,5,7)))
solidarityvalue(bin2lex(c(0,0,2,7,9,10,12,9,11,12,14,19,21,22,24)), amc=TRUE)

solvels Solve linear system

Description

This function classifies and solves the given linear system.

Usage

solvels(A, tol = 100 * .Machine$double.eps)

Arguments

A The augmented matrix of a linear system.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Value

This function returns two outputs: solution and flag. If the introduced linear system is incon-
sistent: flag=-1 and solution=Inf. If it is consistent and has infinitely many solutions: flag=0
and solution returns one of the solutions, as a vector. If it is consistent and has a unique solution:
flag=1 and solution returns the unique solution, as a vector.

Examples

# Consistent and determinate system:
solvels(matrix(c(1,1,1,6,2,-1,1,3,-1,-1,1,0), byrow=TRUE, nrow = 3, ncol = 4))
# Consistent and indeterminate system:
solvels(matrix(c(1,1,-3,0,2,-1,-3,3,4,1,-9,3), byrow=TRUE, nrow = 3, ncol = 4))
# Inconsistent system:
solvels(matrix(c(-2,1,1,1,1,-2,1,1,1,1,-2,1), byrow=TRUE, nrow = 3, ncol = 4))
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strategicallyequivalentcheck

Strategically equivalent check

Description

This function checks if two games are strategically equivalent.

Usage

strategicallyequivalentcheck(v, w, binary = FALSE, parameters = FALSE)

Arguments

v A characteristic function, as a vector.

w A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v and w are
introduced in binary order instead of lexicographic order.

parameters A logical value. By default, parameters=FALSE.

Details

Games v ∈ GN and w ∈ GN are strategically equivalent if there exist k > 0 and an additive game
a ∈ GN such that v(S) = kw(S) + a(S) for all S ∈ 2N .

Value

TRUE if v and w are strategically equivalent, FALSE otherwise. If parameters=TRUE, whenever v and
w are strategically equivalent, the function also returns k (a positive integer) and a (the characteristic
function of an additive game, as a vector in binary order if binary=TRUE and in lexicographic order
otherwise) such that v = kw+ a.

See Also

additivegame, normalizedgame, zeronormalizedgame

Examples

w <- c(1000, 0, 0, 2000, 3000, 2000, 4000)
v <- 4.5 * w + additivegame(c(4, 6, 1), binary = TRUE)
strategicallyequivalentcheck(v, w, binary = TRUE, parameters = TRUE)
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subgame Subgame of a coalition

Description

Given a game and a coalition, this function returns the characteristic function of the subgame of the
given coalition.

Usage

subgame(v, S, binary = FALSE)

Arguments

v A characteristic function, as a vector.

S The position of a coalition, as an integer.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v and S are
introduced according to binary order instead of lexicographic order.

Details

Given v ∈ GN , the subgame of coalition S ∈ 2N is defined by vS(T ) = v(T ) for all T ∈ 2S .

Value

The characteristic function of the subgame of the given coalition, as a vector in binary order if
binary=TRUE and in lexicographic order otherwise.

Examples

v <- c(0, 0, 0, 0, 2, 3, 4, 5, 6, 9, 1, 15, 20, 30, 100)
S <- 13
subgame(v, S)
n <- 4
for (i in 1 : (2^n-1)) {

cat("[", i, "]", paste(subgame(v,i)), "\n")
}
subgame(v,15)==v
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superadditivecheck Superadditive check

Description

This function checks if the given game is superadditive.

Usage

superadditivecheck(v, binary = FALSE, instance = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

instance A logical value. By default, instance=FALSE.

Details

A game v ∈ GN is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N with S ∩ T = ∅.

A game v ∈ GN is subadditive if −v is superadditive.

Value

TRUE if the game is superadditive, FALSE otherwise. If instance=TRUE and the game is not superad-
ditive, the function also returns the positions (binary order positions if binary=TRUE; lexicographic
order positions otherwise) of a pair of coalitions violating superadditivity.

See Also

additivecheck, convexcheck, monotoniccheck, strategicallyequivalentcheck

Examples

v <- c(2, 2, 4, 2, 4, 5, 6)
superadditivecheck(v, binary = TRUE, instance = TRUE)

# How to check if a game is subadditive:
v.sub <- c(40, 30, 50, 60, 70, 65, 90) # subadditive game
superadditivecheck(-v.sub)
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symmetrycheck Symmetry check

Description

Given a game and two players, this function checks if those are symmetric players.

Usage

symmetrycheck(v, i, j, binary = FALSE, tol = 100 * .Machine$double.eps)

Arguments

v A characteristic function, as a vector.

i The position of an individual coalition, as an integer.

j The position of another individual coalition, as an integer.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v, i and j
are introduced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

Let v ∈ GN . Players i, j ∈ N are symmetric in v if, for each S ⊂ N with i, j ∈ S, v(S \ {i}) =
v(S \ {j}).

Value

TRUE if i and j are symmetric in v, FALSE otherwise.

Examples

symmetrycheck(c(13,13,0,0,58,58,0),1,2) # players 1 and 2 are symmetric

tailgame Tail game

Description

Given a sequencing situation without an initial order, this function returns the characteristic function
of the associated tail game.

Usage

tailgame(p, alpha, binary = FALSE)
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Arguments

p A vector containing the processing time of each job.

alpha A vector containing the cost per unit of time that each job generates while un-
finished.

binary A logical value. By default, binary=FALSE.

Details

Given S ∈ 2N , Π(S) is the set of orders of S, that is, the set of all bijective functions from S to
{1, . . . , s}. A generic order of S is denoted by πS ∈ Π(S). Given i ∈ S and πS ∈ Π(S), let
Preπ(i) = {j ∈ S : πS(j) < πS(i)} be the set of predecessors of i according to order πS .

A sequencing situation is a triple (N, p, α) and, possibly, some (information on the) initial order,
where N = {1, . . . , n} is a finite set of agents, each one having one job that has to be processed
on a machine. To simplify, agent i’s job is identified with i. The processing times of the jobs are
given by p = (pi)i∈N with pi > 0 for all i ∈ N . For each agent i ∈ N there is a cost function
ci : (0,∞) → R, so that ci(t) represents the cost incurred when job i is completed exactly at time
t. Assuming that ci is linear for all i ∈ N , there exist αi, βi ≥ 0 such that ci(t) = βi + αit for all
i ∈ N , where βi is a fixed service cost and αit is the completion cost.

For any π ∈ Π(N), C(S, π) is the aggregate completion cost of coalition S in the order π, formally
defined as

C(S, π) =
∑
i∈S

αi

(
pi +

∑
j∈Preπ(i)

pj

)
.

A sequencing situation without initial order is a triple (N, p, α) in which there is no information
about an initial order.

An order that minimizes the aggregate completion cost of coalition N is called an optimal order
and denoted by π̂. Defining the urgency index of each i ∈ N as ui = αi

pi
, an optimal order can

be obtained by arranging jobs in such a way that the corresponding arrangement of their urgency
indices is non-increasing. Given a sequencing situation (N, p, α), Ω(N, p, α) denotes the set of
those optimal orders that also satisfy the following condition: if two jobs share the same urgency
index but not the same processing, the one with shortest processing time goes first.

The characteristic function of the tail game associated to a sequencing situation (N, p, α) is defined,
for each S ∈ 2N , by

ctail(S) = C(S, (πN\S , π̂S)),

where πN\S ∈ Π(N\S) and π̂S ∈ Ω(S, pS , αS).

Having no information about an initial order, coalitions assume they will be processed at the tail of
some "artificial" initial order.

Value

The characteristic function of the tail game (interpreted as a cost game), as a vector in binary order
if binary=TRUE and in lexicographic order otherwise.



66 tauvalue

References

Klijn, F. & Sánchez, E. (2006). Sequencing games without initial order. Mathematical Methods of
Operations Research, 63, 53-62.

See Also

sequencinggame

Examples

p <- c(1,2,3,4)
alpha <- c(4,5,1,2)
tailgame(p,alpha)

tauvalue τ -value

Description

Given a game, this function computes its τ -value.

Usage

tauvalue(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

The τ -value of v ∈ GN is given by

τ(v) = m(v) + α(M(v)−m(v)),

where M(v) is the vector of utopia payoffs, m(v) is the vector of minimal rights, and α is the value
for which

∑
i∈N τi(v) = v(N).

Value

The τ -value of the game, as a vector.

References

Tijs, S. H. (1981). Bounds for the core of a game and the τ -value. In O. Moeschlin and D. Pal-
laschke (Eds.), Game theory and mathematical economics (pp. 123-132).
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See Also

minimalrightsvector, utopiapayoffsvector.

Examples

tauvalue(c(0,0,0,0,10,40,30,60,10,20,90,90,90,130,160))

# What if the game is a cost game?
cost.v <- c(2,2,2,3,4,4,5) # cost game
-tauvalue(-cost.v) # tau-value of the cost game

totallybalancedcheck Totally balanced check

Description

This function checks if the given game is totally balanced and computes its totally balanced cover.

Usage

totallybalancedcheck(
v,
game = FALSE,
binary = FALSE,
tol = 100 * .Machine$double.eps

)

Arguments

v A characteristic function, as a vector.

game A logical value. By default, game=FALSE. If set to TRUE, the totally balanced
cover of the game is also returned.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Details

A game v ∈ GN is totally balanced if all of its subgames are balanced (the subgame of each
coalition S ∈ 2N with respect to v is defined by vS(T ) = v(T ) for all T ∈ 2S).

Value

TRUE if the game is totally balanced, FALSE otherwise. If game=TRUE, the totally balanced cover of
the game is also returned.
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References

Maschler, M., Solan, E., & Zamir, S. (2013). Game Theory. Cambridge University Press.

See Also

balancedcheck, subgame

Examples

totallybalancedcheck(c(0,0,0,0,1/2,0,0,1/2,0,1/2,1/2,1/2,1/2,1/2,1))
totallybalancedcheck(c(0,0,0,0,1,1,0,1,0,0,1,1,1,1,2),game=TRUE)

triangularup Square upper triangulation

Description

This function computes a square upper triangular version of the given matrix.

Usage

triangularup(V, tol = 100 * .Machine$double.eps)

Arguments

V A matrix.

tol A tolerance parameter, as a non-negative number.
By default, tol=100*.Machine$double.eps.

Value

A square upper triangular version of the given matrix.

This function returns two outputs: SUT, the square upper triangular matrix. pivot, a vector indicat-
ing pivot rows.

Examples

set.seed(58)
triangularup(matrix(sample(1:10, 16, replace = TRUE), nrow = 4, ncol = 4))
triangularup(matrix(c(7,8,5,5,3,5,4,1,3,10,4,4,6,7,8,8),byrow=TRUE, nrow = 4, ncol = 4))
triangularup(matrix(c(1,2,1,1,-2,0,1,1),byrow=TRUE, nrow = 2, ncol = 4))
triangularup(matrix(c(1,2,1,-2,0,1,3,-1,1,-2,3,3),byrow=TRUE, nrow = 4, ncol = 3))
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unanimitygame Unanimity game

Description

This function returns the characteristic function of the unanimity game of a coalition.

Usage

unanimitygame(n, S, binary = FALSE)

Arguments

n Number of players, as an integer.

S The position of a coalition, as an integer.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if S is intro-
duced according to binary order instead of lexicographic order.

Details

The characteristic function of the unanimity game of a coalition S ∈ 2N is defined, for each R ∈
2N , as uS(R) = 1 if S ⊂ R and uS(R) = 0 otherwise.

Value

The characteristic function of the unanimity game of coalition S, as a vector in binary order if
binary=TRUE and in lexicographic order otherwise.

Examples

unanimitygame(n=4,S=7)

utopiapayoffsvector Utopia payoffs vector

Description

This function computes the utopia payoffs vector of a game.

Usage

utopiapayoffsvector(v, binary = FALSE)
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Arguments

v A characteristic function, as a vector.
binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-

duced in binary order instead of lexicographic order.

Details

Given v ∈ GN , the utopia payoff of player i ∈ N is defined as Mi(N, v) = v(N)− v(N\i).

Value

The utopia payoffs vector.

See Also

minimalrightsvector

Examples

v <- c(0, 10, 200, 1, 4, 7, 7)
utopiapayoffsvector(v, binary = FALSE)

weightedmajoritygame Weighted majority game

Description

This function returns the characteristic function of the described weighted majority game.

Usage

weightedmajoritygame(q, w, binary = FALSE)

Arguments

q A quota, as a number between 0 and the sum of player weights.
w The player weights, as a vector of non-negative numbers.
binary A logical value. By default, binary=FALSE.

Details

Given a situation in which a number of agents have to vote for or against a certain measure, let
N = {1, . . . , n} be the set of voters, w be a non-negative vector of voter weights (the weight of
each voter is the number of votes or the proportion of total votes they hold), and q ∈ [0,

∑
i∈N wi]

be the quota (the minimum number of votes or the minimum proportion of total votes needed to
pass the measure). The corresponding weighted majority game, v, is defined by

v(S) = 1 if
∑
i∈S

wi ⩾ q and v(S) = 0 otherwise, for each S ∈ 2N .
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Value

The characteristic function of the weighted majority game associated with the described situation,
as a vector in binary order if binary=TRUE and in lexicographic order otherwise.

Examples

q <- 39
w <- c(rep(7,5),rep(1,10))
weightedmajoritygame(q,w)

weightedshapleyvalue Positively weighted Shapley value

Description

Given a game, positive player weights and an ordered partition of the set of players, this function
returns the corresponding weighted Shapley value.

Usage

weightedshapleyvalue(v, binary = FALSE, weights, partition = NULL)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

weights The player weights, as a vector of positive numbers.

partition An ordered partition of the set of players, as a list of vectors. When not specified,
it is taken to be the partition whose only element is the set of all players.

Details

A weight system ω is a pair ω = (λ,S) where λ = (λi)i∈N is a positive weight vector (λi > 0
for each i ∈ N ) and S = (S1, . . . , Sm) is an ordered partition of N . The weighted Shapley value
with weight system ω = (λ,S) is the linear map Shω that assigns to each unanimity game uT , with
T ∈ 2N \ ∅, the allocations Shω

i (uT ) =
λi

λ(T∩Sk)
if i ∈ T ∩ Sk and Shω

i = 0 if i /∈ T ∩ Sk, where
k = max{i ∈ N : Si ∩ T ̸= ∅}. Then, for each v ∈ GN and being cT the Harsanyi dividend of
coalition T ∈ 2N ,

Shω(v) =
∑

T∈2N\∅

cTSh
ω(uT ).

Value

The positively weighted Shapley value of the game, as a vector.
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References

Shapley, L. S. (1953). Additive and non-additive set functions. PhD thesis, Department of Mathe-
matics, Princeton University.

See Also

coalitionweightedshapleyvalue, harsanyidividend, shapleyvalue

Examples

v <- c(0,0,0,0,0,0,1,0,0,1,3,4,6,8,10)
weightedshapleyvalue(v,binary=TRUE,weights=c(0.5,0.2,0.2,0.1))
w <- c(0,0,0,0,30,30,40,40,50,50,60,70,80,90,100)
weightedshapleyvalue(w,weights=c(1,2,3,4),partition=list(c(1,2),c(3,4)))

zeromonotoniccheck 0-monotonic check

Description

This function checks if the given game is 0-monotonic.

Usage

zeromonotoniccheck(v, binary = FALSE, instance = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

instance A logical value. By default, instance=FALSE.

Details

A game v ∈ GN is 0-monotonic if v0(S) ≤ v0(T ) for all S, T ∈ 2N such that S ⊂ T , being
v0 ∈ GN the 0-normalization of v.

Value

TRUE if the game is 0-monotonic, FALSE otherwise. If instance=TRUE and the game is not 0-
monotonic, the function also returns the positions (binary order positions if binary=TRUE; lexico-
graphic order positions otherwise) of a pair of coalitions violating 0-monotonicity.

See Also

monotoniccheck, zeronormalizedgame, zeronormalizedcheck
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Examples

v <- c(0, 0, 0, 1, 1, 1, 2)
zeromonotoniccheck(v, binary = TRUE)
monotoniccheck(v, binary = TRUE)

w <- c(-2,-2,-2,7,7,7,6)
zeromonotoniccheck(w)
monotoniccheck(w)

z <- c(1, 1, 1, 2, 2, 2, 2)
zeromonotoniccheck(z)
monotoniccheck(z)

zeronormalizedcheck 0-normalized check

Description

This function checks if the given game is 0-normalized.

Usage

zeronormalizedcheck(v, binary = FALSE, instance = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

instance A logical value. By default, instance=FALSE.

Details

A game v ∈ GN is 0-normalized if v(i) = 0 for all i ∈ N .

Value

TRUE if the game is 0-normalized, FALSE otherwise. If instance=TRUE and the game is not 0-
normalized, the function also returns a player for whose value is not zero.

See Also

normalizedgame, strategicallyequivalentcheck, zeromonotoniccheck, zeronormalizedgame

Examples

v <- c(rep(0, 4), 1, rep(30, 20), rep(3, 5), 50) # v(5)=1
zeronormalizedcheck(v, binary = FALSE, instance = TRUE)
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zeronormalizedgame 0-normalized game

Description

Given a game, this function returns the characteristic function of its 0-normalization.

Usage

zeronormalizedgame(v, binary = FALSE)

Arguments

v A characteristic function, as a vector.

binary A logical value. By default, binary=FALSE. Should be set to TRUE if v is intro-
duced in binary order instead of lexicographic order.

Details

The 0-normalization of a given v ∈ GN is defined by v0(S) = v(S)−
∑

i∈S v(i) for each S ∈ 2N .

Value

The characteristic function of the 0-normalized game, as a vector in binary order if binary=TRUE
and in lexicographic order otherwise.

See Also

normalizedgame, savingsgame, strategicallyequivalentcheck, zeromonotoniccheck, zeronormalized-
check

Examples

zeronormalizedgame(c(0,3,7,15,17,27,30))
zeronormalizedgame(c(1,5,10,6,11,15,16))
v.random <- rnorm(2^5-1,58,13)
zeronormalizedgame(v.random) == -savingsgame(v.random)
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