
Package ‘frbs’
October 13, 2022

Maintainer Christoph Bergmeir <c.bergmeir@decsai.ugr.es>

License GPL (>= 2) | file LICENSE

Title Fuzzy Rule-Based Systems for Classification and Regression Tasks

Author Lala Septem Riza, Christoph Bergmeir, Francisco Herrera, and
Jose Manuel Benitez

Description An implementation of various learning algorithms based on fuzzy rule-based sys-
tems (FRBSs) for dealing with classification and regression tasks. Moreover, it allows to con-
struct an FRBS model defined by human experts.
FRBSs are based on the concept of fuzzy sets, proposed by Zadeh in 1965, which aims at
representing the reasoning of human experts in a set of IF-THEN rules, to
handle real-life problems in, e.g., control, prediction and inference, data
mining, bioinformatics data processing, and robotics. FRBSs are also known
as fuzzy inference systems and fuzzy models. During the modeling of an
FRBS, there are two important steps that need to be conducted: structure
identification and parameter estimation. Nowadays, there exists a wide
variety of algorithms to generate fuzzy IF-THEN rules automatically from
numerical data, covering both steps. Approaches that have been used in the
past are, e.g., heuristic procedures, neuro-fuzzy techniques, clustering
methods, genetic algorithms, squares methods, etc. Furthermore, in this
version we provide a universal framework named 'frbsPMML', which is adopted
from the Predictive Model Markup Language (PMML), for representing FRBS
models. PMML is an XML-based language to provide a standard for describing
models produced by data mining and machine learning algorithms. Therefore,
we are allowed to export and import an FRBS model to/from 'frbsPMML'.
Finally, this package aims to implement the most widely used standard
procedures, thus offering a standard package for FRBS modeling to the R
community.

Version 3.2-0

URL http://sci2s.ugr.es/dicits/software/FRBS

Date 2019-12-15

Suggests class, e1071, XML, R.rsp

VignetteBuilder R.rsp

RoxygenNote 6.1.0

1

http://sci2s.ugr.es/dicits/software/FRBS

2 R topics documented:

NeedsCompilation no

Repository CRAN

Date/Publication 2019-12-15 06:10:02 UTC

R topics documented:
frbs-package . 3
ANFIS . 10
ANFIS.update . 11
data.gen3d . 12
defuzzifier . 13
DENFIS . 14
DENFIS.eng . 15
denorm.data . 16
DM.update . 16
ECM . 17
FH.GBML . 18
FIR.DM . 19
FRBCS.CHI . 20
FRBCS.eng . 21
FRBCS.W . 21
frbs.eng . 22
frbs.gen . 23
frbs.learn . 30
frbsData . 39
frbsObjectFactory . 40
frbsPMML . 41
FS.HGD . 44
fuzzifier . 45
GFS.FR.MOGUL . 46
GFS.FR.MOGUL.test . 47
GFS.GCCL . 48
GFS.GCCL.eng . 49
GFS.LT.RS . 49
GFS.LT.RS.test . 51
GFS.Thrift . 51
GFS.Thrift.test . 52
HGD.update . 53
HyFIS . 53
HyFIS.update . 55
inference . 56
norm.data . 57
plotMF . 58
predict.frbs . 59
read.frbsPMML . 61
rulebase . 62
SBC . 64

frbs-package 3

SBC.test . 65
SLAVE . 66
SLAVE.test . 67
summary.frbs . 68
WM . 70
write.frbsPMML . 71

Index 74

frbs-package Getting started with the frbs package

Description

Fuzzy rule-based systems (FRBSs) are based on the fuzzy concept proposed by Zadeh in 1965,
which represents the reasoning of human experts in production rules (a set of IF-THEN rules) to
handle real-life problems from domains such as control, prediction and inference, data mining,
bioinformatics data processing, robotics, and speech recognition. FRBSs are also known as fuzzy
inference systems and fuzzy models. When applied to specific tasks, they may also be known
under specific names such as fuzzy associative memories or fuzzy controllers. In this package, we
consider systems with multi-inputs and single-output (MISO), with real-valued data.

Details

FRBSs are a competitive alternative to other classic models and algorithms in order to solve classi-
fication and regression problems. Generally, an FRBS consists of four functional parts:

• a fuzzification interface which transforms the crisp inputs into degrees of membership func-
tions of the linguistic term of each variable. See fuzzifier.

• a knowledge base consisting of a database (DB) and a rulebase (RB). While the database in-
cludes the fuzzy set definitions, the rulebase contains fuzzy IF-THEN rules. We will represent
the knowledge as a set of rules. Each one has the following structure.
IF premise (antecedent) THEN conclusion (consequent)

See rulebase.

• an inference engine which performs the inference operations on the fuzzy IF-THEN rules.
There are two kinds of inference for fuzzy systems based on linguistic rules: The Mamdani
and the Takagi Sugeno Kang model. See inference.

• a defuzzification process to obtain the crisp values from linguistic values. There are several
methods for defuzzification such as the weighted average, centroid, etc. See defuzzifier.

Since it may be difficult to obtain information from human experts in the form required, an alter-
native and effective way to acquire the knowledge is to generate the fuzzy IF-THEN rules auto-
matically from the numerical training data. In general, when modeling an FRBS, there are two
important processes which should be conducted, namely structure identification and parameter
estimation. Structure identification is a process to find appropriate fuzzy IF-THEN rules and to
determine the overall number of rules. Parameter estimation is applied to tune parameters of mem-
bership functions. Many approaches have been proposed in order to perform this modeling such as

4 frbs-package

a table-lookup scheme, heuristic procedures, neuro-fuzzy techniques, clustering methods, genetic
algorithms, least squares methods, gradient descent, etc. In this package, the following approaches
to generate fuzzy IF-THEN rules have been implemented:

1. FRBS based on space partition

• Wang and Mendel’s technique (WM): It is used to solve regression tasks. See WM.
• Chi’s technique (FRBCS.CHI): It is used to solve classification tasks. See FRBCS.CHI.
• Ishibuchi’s technique using weight factor (FRBCS.W): It is used to solve classification

tasks. See FRBCS.W.

2. FRBS based on neural networks

• The adaptive-network-based fuzzy inference system (ANFIS): It is used to solve regression
tasks. See ANFIS.

• The hybrid neural fuzzy inference system (HYFIS): It is used to solve regression tasks.
See HyFIS.

3. FRBS based on clustering approach

• The subtractive clustering and fuzzy c-means (SBC): It is used to solve regression tasks.
See SBC.

• The dynamic evolving neural-fuzzy inference system (DENFIS): It is used to solve regres-
sion tasks. See DENFIS.

4. FRBS based on genetic algorithms

• The Thrift’s method (GFS.THRIFT): It is used to solve regression tasks. See GFS.Thrift.
• The Genetic fuzzy systems for fuzzy rule learning based on the MOGUL methodology

(GFS.FR.MOGUL): It is used to solve regression tasks. See GFS.FR.MOGUL.
• The Ishibuchi’s method based on genetic cooperative-competitive learning (GFS.GCCL):

It is used to solve classification tasks. See GFS.GCCL.
• The Ishibuchi’s method based on hybridization of genetic cooperative-competitive learn-

ing (GCCL) and Pittsburgh (FH.GBML): It is used to solve classification tasks. See FH.GBML.
• The structural learning algorithm on vague environtment (SLAVE): It is used to solve clas-

sification tasks. See SLAVE.
• The genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS):

It is used to solve regression tasks. See GFS.LT.RS.

5. FRBS based on the gradient descent method

• The FRBS using heuristics and gradient descent method (FS.HGD): It is used to solve
regression tasks. See FS.HGD

• The fuzzy inference rules by descent method (FIR.DM): It is used to solve regression
tasks. See FIR.DM

The functions documented in the manual for the single methods are all called internally by frbs.learn,
which is the central function of the package. However, in the documentation of each of the internal
learning functions, we give some theoretical background and references to the original literature.

Usage of the package:
First of all, if you have problems using the package, find a bug, or have suggestions, please contact
the package maintainer by email, instead of writing to the general R lists or to other internet forums
and mailing lists.

The main functions of the package are the following:

frbs-package 5

• The function frbs.learn allows to generate the model by creating fuzzy IF-THEN rules or
cluster centers from training data. In other words, users just need to call this function to
generate an FRBS model from training data. The different algorithms mentioned above are all
accessible through this function. The outcome of the function is an frbs-object.

• Even though the main purpose of this package is to generate the FRBS models from training
data automatically, we provide the function frbs.gen, which can be used to build a model
manually without using a learning method. Moreover, we provide the following features: lin-
guistic hedges, the "and" and "or" operators, and the "dont_care" value for representing the de-
gree of 1. The higher degree of interpretability can also be achieved by using the "dont_care"
value. If we want to define various length of rules in the rulebase, we can also define the
"dont_care" value. See rulebase.

• The purpose of the function predict is to obtain predicted values according to the testing
data and the model (analogous to the predict function that is implemented in many other R
packages).

• There exist functions summary.frbs and plotMF to show a summary about an frbs-object,
and to plot the shapes of the membership functions.

• Exporting an FRBS model to the frbsPMML format can be done by executing frbsPMML and
write.frbsPMML. The frbsPMML format is a universal framework adopted from the Pre-
dictive Model Markup Language (PMML) format. Then, in order to consume/import the
frbsPMML format to an FRBS model, we call read.frbsPMML.

To get started with the package, the user can have a look at some examples included in the docu-
mentation of the functions frbs.learn and frbs.gen for generating models and predict for the
prediction phase.

Also, there are many demos that ship with the package. To get a list of them, type:

demo()

Then, to start a demo, type demo(<demo_name_here>). All the demos are present as R scripts in
the package sources in the "demo" subdirectory. Note that some of them may take quite a long time
which depends on specification hardwares.

Currently, there are the following demos available:

Regression using the Gas Furnance dataset:

demo(WM.GasFur), demo(SBC.GasFur), demo(ANFIS.GasFur),

demo(FS.HGD.GasFur), demo(DENFIS.GasFur), demo(HyFIS.GasFur),

demo(FIR.DM.GasFur), demo(GFS.FR.MOGUL.GasFur),

demo(GFS.THRIFT.GasFur), demo(GFS.LT.RS.GasFur).

Regression using the Mackey-Glass dataset:

demo(WM.MG1000), demo(SBC.MG1000), demo(ANFIS.MG1000),

demo(FS.HGD.MG1000), demo(DENFIS.MG1000), demo(HyFIS.MG1000),

demo(GFS.THRIFT.MG1000), demo(FIR.DM.MG1000),

demo(GFS.FR.MOGUL.MG1000), demo(GFS.LT.RS.MG1000).

Classification using the Iris dataset:

demo(FRBCS.W.Iris), demo(FRBCS.CHI.Iris), demo(GFS.GCCL.Iris),

6 frbs-package

demo(FH.GBML.Iris), demo(SLAVE.Iris).

Generating FRBS model without learning process:

demo(FRBS.Mamdani.Manual), demo(FRBS.TSK.Manual), demo(FRBS.Manual).

Exporting/importing to/from frbsPMML:

demo(WM.GasFur.PMML), demo(ANFIS.GasFur.PMML), demo(GFS.GCCL.Iris.PMML).

The Gas Furnance data and Mackey-Glass data are included in the package, please see frbsData.
The Iris data is the standard Iris dataset that ships with R.

Also have a look at the package webpage http://sci2s.ugr.es/dicits/software/FRBS, where
we provide a more extensive introduction as well as additional explanations of the procedures.

Author(s)

Lala Septem Riza <lala.s.riza@decsai.ugr.es>,

Christoph Bergmeir <c.bergmeir@decsai.ugr.es>,

Francisco Herrera <herrera@decsai.ugr.es>,

and Jose Manuel Benitez <j.m.benitez@decsai.ugr.es>

DiCITS Lab, SCI2S group, DECSAI, University of Granada.

http://sci2s.ugr.es/dicits/, http://sci2s.ugr.es

References

A. Guazzelli, M. Zeller, W.C. Lin, and G. Williams., "pmml: An open standard for sharing models",
The R Journal, Vol. 1, No. 1, pp. 60-65 (2009).

C.C. Lee, "Fuzzy Logic in control systems: Fuzzy logic controller part I", IEEE Trans. Syst., Man,
Cybern., vol. 20, no. 2, pp. 404 - 418 (1990).

C.C. Lee, "Fuzzy Logic in control systems: Fuzzy logic controller part II", IEEE Trans. Syst., Man,
Cybern., vol. 20, no. 2, pp. 419 - 435 (1990).

E.H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller,"
International Journal of Man Machine Studies, vol. 7, no. 1, pp. 1 - 13 (1975).

W. Pedrycz, "Fuzzy Control and Fuzzy Systems," New York: Wiley (1989).

L.S. Riza, C. Bergmeir, F. Herrera, and J.M. Benitez, "frbs: Fuzzy Rule-Based Systems for Classi-
fication and Regression in R," Journal of Statistical Software, vol. 65, no. 6, pp. 1 - 30 (2015).

M. Sugeno and G.T. Kang, "Structure identification of fuzzy model," Fuzzy Sets Syst., vol. 28, pp.
15 - 33 (1988).

T. Takagi and M. Sugeno, "Fuzzy identification of systems and its application to modelling and
control", IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116 - 132
(1985).

L.A. Zadeh, "Fuzzy sets", Information and Control, vol. 8, pp. 338 - 353 (1965).

See Also

frbs.learn, frbs.gen, frbsPMML, and predict.

http://sci2s.ugr.es/dicits/software/FRBS
http://sci2s.ugr.es/dicits/
http://sci2s.ugr.es

frbs-package 7

Examples

##################################
I. Regression Problem
In this example, we are using the gas furnace dataset that
contains two input and one output variables.
##################################

Input data: Using the Gas Furnace dataset
then split the data to be training and testing datasets
data(frbsData)
data.train <- frbsData$GasFurnance.dt[1 : 204,]
data.tst <- frbsData$GasFurnance.dt[205 : 292, 1 : 2]
real.val <- matrix(frbsData$GasFurnance.dt[205 : 292, 3], ncol = 1)

Define interval of data
range.data <-apply(data.train, 2, range)

Set the method and its parameters,
for example, we use Wang and Mendel's algorithm
method.type <- "WM"
control <- list(num.labels = 15, type.mf = "GAUSSIAN", type.defuz = "WAM",

type.tnorm = "MIN", type.snorm = "MAX", type.implication.func = "ZADEH",
name = "sim-0")

Learning step: Generate an FRBS model
object.reg <- frbs.learn(data.train, range.data, method.type, control)

Predicting step: Predict for newdata
res.test <- predict(object.reg, data.tst)

Display the FRBS model
summary(object.reg)

Plot the membership functions
plotMF(object.reg)

##################################
II. Classification Problem
In this example, we are using the iris dataset that
contains four input and one output variables.
##################################

Input data: Using the Iris dataset
data(iris)
set.seed(2)

Shuffle the data
then split the data to be training and testing datasets
irisShuffled <- iris[sample(nrow(iris)),]
irisShuffled[, 5] <- unclass(irisShuffled[, 5])
tra.iris <- irisShuffled[1 : 105,]
tst.iris <- irisShuffled[106 : nrow(irisShuffled), 1 : 4]

8 frbs-package

real.iris <- matrix(irisShuffled[106 : nrow(irisShuffled), 5], ncol = 1)

Define range of input data. Note that it is only for the input variables.
range.data.input <- apply(iris[, -ncol(iris)], 2, range)

Set the method and its parameters. In this case we use FRBCS.W algorithm
method.type <- "FRBCS.W"
control <- list(num.labels = 7, type.mf = "GAUSSIAN", type.tnorm = "MIN",

type.snorm = "MAX", type.implication.func = "ZADEH")

Learning step: Generate fuzzy model
object.cls <- frbs.learn(tra.iris, range.data.input, method.type, control)

Predicting step: Predict newdata
res.test <- predict(object.cls, tst.iris)

Display the FRBS model
summary(object.cls)

Plot the membership functions
plotMF(object.cls)

###
III. Constructing an FRBS model from human expert.
In this example, we only consider the Mamdani model for regression. However,
other models can be done in the same way.
Note:
In the examples, let us consider four input and one output variables.
###

Define a matrix representing shape and parameters of membership functions of input variables.
The matrix has 5 rows where the first row represent the type of the membership function whereas
others are values of its parameters.
Detailed explanation can be seen in the fuzzifier function to construct the matrix.
varinp.mf <- matrix(c(2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA,

2, 0, 35, 75, NA, 3, 35, 75, 100, NA,
2, 0, 20, 40, NA, 1, 20, 50, 80, NA, 3, 60, 80, 100, NA,
2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA),
nrow = 5, byrow = FALSE)

Define number of linguistic terms of input variables.
Suppose, we have 3, 2, 3, and 3 numbers of linguistic terms
for the first, second, third and fourth variables, respectively.
num.fvalinput <- matrix(c(3, 2, 3, 3), nrow=1)

Give the names of the linguistic terms of each input variables.
varinput.1 <- c("low", "medium", "high")
varinput.2 <- c("yes", "no")
varinput.3 <- c("bad", "neutral", "good")
varinput.4 <- c("low", "medium", "high")
names.varinput <- c(varinput.1, varinput.2, varinput.3, varinput.4)

Set interval of data.

frbs-package 9

range.data <- matrix(c(0, 100, 0, 100, 0, 100, 0, 100, 0, 100), nrow = 2)

Define inference parameters.
Detailed information about values can be seen in the inference function.
type.defuz <- "WAM"
type.tnorm <- "MIN"
type.snorm <- "MAX"
type.implication.func <- "ZADEH"

Give the name of simulation.
name <- "Sim-0"

Provide new data for testing.
newdata<- matrix(c(25, 40, 35, 15, 45, 75, 78, 70), nrow = 2, byrow = TRUE)
the names of variables
colnames.var <- c("input1", "input2", "input3", "input4", "output1")

Define number of linguistic terms of output variable.
In this case, we set the number of linguistic terms to 3.
num.fvaloutput <- matrix(c(3), nrow = 1)

Give the names of the linguistic terms of the output variable.
varoutput.1 <- c("bad", "neutral", "good")
names.varoutput <- c(varoutput.1)

Define the shapes and parameters of the membership functions of the output variables.
varout.mf <- matrix(c(2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA),

nrow = 5, byrow = FALSE)

Set type of model which is "MAMDANI".
type.model <- "MAMDANI"

Define the fuzzy IF-THEN rules;
In this example we are using the Mamdani model
Note: e.g.,
"a1", "and", "b1, "->", "e1" means that
"IF inputvar.1 is a1 and inputvar.2 is b1 THEN outputvar.1 is e1"
Make sure that each rule has a "->" sign.
rule <- matrix(

c("low", "and", "yes", "and", "bad", "and", "low", "->", "bad",
"medium", "and", "no", "and", "neutral", "and", "medium", "->", "neutral",
"high", "and", "no", "and", "neutral", "and", "low", "->", "good"),
nrow = 3, byrow = TRUE)

Generate a fuzzy model with frbs.gen.
object <- frbs.gen(range.data, num.fvalinput, names.varinput,

num.fvaloutput, varout.mf, names.varoutput, rule,
varinp.mf, type.model, type.defuz, type.tnorm,
type.snorm, func.tsk = NULL, colnames.var, type.implication.func, name)

Plot the membership function.
plotMF(object)

10 ANFIS

Predicting using new data.
res <- predict(object, newdata)$predicted.val

###
IV. Specifying an FRBS model in the frbsPMML format.
other examples can be seen in the frbsPMML function.
###
Input data
data(frbsData)
data.train <- frbsData$GasFurnance.dt[1 : 204,]
data.fit <- data.train[, 1 : 2]
data.tst <- frbsData$GasFurnance.dt[205 : 292, 1 : 2]
real.val <- matrix(frbsData$GasFurnance.dt[205 : 292, 3], ncol = 1)
range.data<-matrix(c(-2.716, 2.834, 45.6, 60.5, 45.6, 60.5), nrow = 2)

Set the method and its parameters
method.type <- "WM"
control <- list(num.labels = 3, type.mf = "GAUSSIAN", type.defuz = "WAM",

type.tnorm = "MIN", type.snorm = "MAX",
type.implication.func = "ZADEH", name="sim-0")

Generate fuzzy model
object <- frbs.learn(data.train, range.data, method.type, control)

2. Constructing the frbsPMML format
frbsPMML(object)

ANFIS ANFIS model building

Description

This is the internal function that implements the adaptive-network-based fuzzy inference system
(ANFIS). It is used to solve regression tasks. Users do not need to call it directly, but just use
frbs.learn and predict.

Usage

ANFIS(data.train, num.labels, max.iter = 10, step.size = 0.01,
type.tnorm = "MIN", type.snorm = "MAX",
type.implication.func = "ZADEH")

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

num.labels a matrix (1 × n), whose elements represent the number of labels (linguistic
terms); n is the number of variables.

ANFIS.update 11

max.iter the maximal number of iterations.

step.size a real number between 0 and 1 representing the step size of the gradient descent.

type.tnorm the type of t-norm. For more detail, please have a look at inference.

type.snorm the type of s-norm. For more detail, please have a look at inference.
type.implication.func

a value representing the type of implication functions. For more detail, please
have a look at WM.

Details

This method was proposed by J. S. R. Jang. It uses the Takagi Sugeno Kang model on the con-
sequent part of the fuzzy IF-THEN rules. The ANFIS architecture consists of two processes, the
forward and the backward stage. The forward stage has five layers as follows:

• Layer 1: The fuzzification process which transforms crisp values into linguistic terms using
the Gaussian function as the shape of the membership function.

• Layer 2: The inference stage using the t-norm operator (the AND operator).

• Layer 3: Calculating the ratio of the strengths of the rules.

• Layer 4: Calculating the consequent parameters.

• Layer 5: Calculating the overall output as the sum of all incoming signals.

The backward stage is a process of parameter learning. In this step, the least squares method is used
in order to obtain the parameters, which are coefficients of linear equations on the consequent part,
and mean and variance on the antecedent part.

References

J.S.R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 23, no. 3, pp. 665 - 685 (1993).

J.S.R. Jang, C.T. Sun, and E. Mizutani., "Neuro-fuzzy and soft computing: a computational ap-
proach to learning and machine intelligence", Prentice-Hall, Inc (1997).

See Also

ANFIS.update, frbs.learn, and predict

ANFIS.update ANFIS updating function

Description

The role of this function is to update parameters in the ANFIS method. This function is called by
the main function of the ANFIS method, ANFIS.

12 data.gen3d

Usage

ANFIS.update(data.train, def, rule.data.num, miu.rule, func.tsk, varinp.mf,
step.size = 0.01)

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable.

def a predicted value

rule.data.num a matrix containing the rule base in integer form.

miu.rule a matrix with the degrees of rules. See inference.

func.tsk a matrix of parameters of the function on the consequent part using the Takagi
Sugeno Kang model.

varinp.mf a matrix of parameters of membership functions of the input variables.

step.size a real number between 0 and 1 representing the step size of the gradient descent.

data.gen3d A data generator

Description

The purpose of this function is to generate data, which contains two input variables and one output
variable, automatically for all values on a plane.

Usage

data.gen3d(range.input, num.grid = 10)

Arguments

range.input the range of the input variables, as a matrix (2× n).

num.grid a number representing the size of the grid on the plane.

Value

the data

Examples

range.input <- matrix(c(0, 100, 0, 100), nrow=2)
num.grid <- 10
data.test <- data.gen3d(range.input, num.grid)

defuzzifier 13

defuzzifier Defuzzifier to transform from linguistic terms to crisp values

Description

Defuzzification is a transformation that extracts the crisp values from the linguistic terms.

Usage

defuzzifier(data, rule = NULL, range.output = NULL,
names.varoutput = NULL, varout.mf = NULL, miu.rule,
type.defuz = NULL, type.model = "TSK", func.tsk = NULL)

Arguments

data a matrix (m×n) of data, wherem is the number of instances and n is the number
of variables.

rule a list or matrix of fuzzy IF-THEN rules, as discussed in rulebase.
range.output a matrix (2× n) containing the range of the output data.
names.varoutput

a list for giving names to the linguistic terms. See rulebase.
varout.mf a matrix constructing the membership function of the output variable. See

fuzzifier.
miu.rule the results of the inference module. See inference.
type.defuz the type of defuzzification to be used as follows.

• 1 or WAM means weighted average method,
• 2 or FIRST.MAX means first maxima,
• 3 or LAST.MAX means last maxima,
• 4 or MEAN.MAX means mean maxima,
• 5 or COG means modified center of gravity (COG).

type.model the type of the model that will be used in the simulation. Here, 1 or MAMDANI and
2 or TSK means we use Mamdani or Takagi Sugeno Kang model, respectively.

func.tsk a matrix used to build the linear equation for the consequent part if we are using
Takagi Sugeno Kang. See also rulebase.

Details

In this function, there exist two kinds of models which are based on the Mamdani and Takagi
Sugeno Kang model. For the Mamdani model there are five methods for defuzzifying a linguistic
term A of a universe of discourse Z. They are as follows:

1. weighted average method (WAM).
2. first of maxima (FIRST.MAX).
3. last of maxima (LAST.MAX)
4. mean of maxima (MEAN.MAX).
5. modified center of gravity (COG).

14 DENFIS

Value

A matrix of crisp values

See Also

fuzzifier, rulebase, and inference

DENFIS DENFIS model building

Description

This is the internal function that implements the dynamic evolving neural-fuzzy inference system
(DENFIS). It is used to handle regression tasks. Users do not need to call it directly, but just use
frbs.learn and predict.

Usage

DENFIS(data.train, range.data.ori, Dthr = 0.1, max.iter = 100,
step.size = 0.01, d = 2)

Arguments

data.train a matrix (m × n) of data for the training process, where m is the number of
instances and n is the number of variables (input and output variables).

range.data.ori a matrix (2 × n) containing the range of the data, where n is the number of
variables, and first and second rows are the minimum and maximum values,
respectively.

Dthr the threshold value for the evolving clustering method (ECM), between 0 and 1.
max.iter the maximal number of iterations.
step.size the step size of the least squares method, between 0 and 1.
d a parameter for the width of the triangular membership function.

Details

This method was proposed by Nikola K. Kasabov and Q. Song. There are several steps in this
method that are to determine the cluster centers using the evolving clustering method (ECM), to
partition the input space and to find optimal parameters on the consequent part (Takagi Sugeno
Kang model) for the IF-THEN rule using a least squares estimator.

ECM is a distance-based clustering method which is determined by a threshold value, Dthr. This
parameter influences how many clusters are created. In the beginning of the clustering process, the
first instance from the training data is chosen to be a cluster center, and the determining radius is set
to zero. Afterwards, using the next instance, cluster centers and radius are changed based on certain
mechanisms of ECM (please see ECM). All of the cluster centers are then obtained after evaluating
all the training data. The next step is to update the parameters on the consequent part with the
assumption that the antecedent part which we got from ECM is fixed. Actually, ECM can perform
well as an online clustering method, but in this package it is used in an offline mode.

DENFIS.eng 15

References

N.K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its
Application for time-series prediction", IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp.
144 - 154 (2002).

See Also

DENFIS.eng, frbs.learn, and predict

DENFIS.eng DENFIS prediction function

Description

This function is an internal function for the prediction phase using the DENFIS method. The user
should use this function not directly, but with calling predict.

Usage

DENFIS.eng(object, newdata)

Arguments

object the frbs model. See frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

Value

a matrix of predicted values

See Also

DENFIS

16 DM.update

denorm.data The data de-normalization

Description

This function is to transform from normalized data into real-valued data.

Usage

denorm.data(dt.norm, range.data, min.scale = 0, max.scale = 1)

Arguments

dt.norm a matrix (n×m) of the normalized data.

range.data a matrix (2 × n) containing the range of the data, where n is the number of
variables, and first and second rows are the minimum and maximum value, re-
spectively.

min.scale the minimum value within normalization.

max.scale the maximum value within normalization.

Value

the real-valued data

See Also

norm.data

DM.update FIR.DM updating function

Description

The role of this function is to update the parameters of the fuzzy inference rules by descent method
(FIR.DM). This function is called by the main function of the FIR.DM method, FIR.DM.

Usage

DM.update(data.train, rule.data.num, miu.rule, func.tsk, varinp.mf,
step.size = 0.01, def)

ECM 17

Arguments

data.train a matrix (m× n) of normalized data, where m is the number of instances and n
is the number of variables; the last column is the output variable.

rule.data.num a matrix containing the rulebase. Its elements are integers, see rulebase.

miu.rule a matrix with the degrees of rules which is a result of the inference.

func.tsk a matrix of parameters of the functions on the consequent part of the Takagi
Sugeno Kang model.

varinp.mf a matrix of parameters of the membership functions of the input variables.

step.size the step size of the descent method, between 0 and 1.

def a matrix which is obtained from the defuzzification. Please have a look at
defuzzifier.

See Also

frbs.learn, predict, and FIR.DM.

ECM Evolving Clustering Method

Description

This function is a part of the DENFIS method to generate cluster centers.

Usage

ECM(data.train, Dthr)

Arguments

data.train a matrix (m× n) of data for training, where m is the number of instances and n
is the number of variables where the last column is the output variable.

Dthr the threshold value for the evolving clustering method (ECM), between 0 and 1.

Value

a matrix of cluster centers

See Also

DENFIS and DENFIS.eng

18 FH.GBML

FH.GBML FH.GBML model building

Description

This is the internal function that implements the Ishibuchi’s method based on hybridization of ge-
netic cooperative-competitive learning (GCCL) and Pittsburgh (FH.GBML). It is used to solve clas-
sification tasks. Users do not need to call it directly, but just use frbs.learn and predict.

Usage

FH.GBML(data.train, popu.size = 10, max.num.rule = 5,
persen_cross = 0.6, persen_mutant = 0.3, max.gen = 10, num.class,
range.data.input, p.dcare = 0.5, p.gccl = 0.5)

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

popu.size the size of the population which is generated in each generation.

max.num.rule the maximum number of rules.

persen_cross a real number between 0 and 1 determining the probability of crossover.

persen_mutant a real number between 0 and 1 determining the probability of mutation.

max.gen the maximal number of generations for the genetic algorithms.

num.class a number of the classes.
range.data.input

a matrix containing the ranges of the normalized input data.

p.dcare a probability of "don’t care" attributes occurred.

p.gccl a probability of GCCL process occurred.

Details

This method is based on Ishibuchi’s method using the hybridization of GCCL and the Pittsburgh
approach for genetic fuzzy systems. The algorithm of this method is as follows:

• Step 1: Generate population where each individual in the population is a fuzzy rule set.

• Step 2: Calculate the fitness value of each rule set in the current population.

• Step 3: Generate new rule sets by the selection, crossover, and mutation in the same manner
as the Pittsburgh-style algorithm. Then, apply iterations of the GCCL to each of the generated
rule sets with a probability.

• Step 4: Add the best rule set in the current population to newly generated rule sets to form the
next population.

• Step 5: Return to Step 2 if the prespecified stopping condition is not satisfied.

FIR.DM 19

References

H. Ishibuchi, T. Yamamoto, and T. Nakashima, "Hybridization of fuzzy GBML approaches for pat-
tern classification problems," IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics,
vol. 35, no. 2, pp. 359 - 365 (2005).

FIR.DM FIR.DM model building

Description

This is the internal function that implements the fuzzy inference rules by descent method (FIR.DM).
It is used to solve regression tasks. Users do not need to call it directly, but just use frbs.learn
and predict.

Usage

FIR.DM(data.train, num.labels, max.iter, step.size, type.tnorm = "MIN",
type.snorm = "MAX", type.implication.func = "ZADEH")

Arguments

data.train a matrix (m× n) of normalized data for training, where m is the number of in-
stances and n is the number of variables. The last column is the output variable.
Note the data must be normalized between 0 and 1.

num.labels a matrix (1 × n) whose elements represent the number of labels (fuzzy terms),
where n is the number of variables.

max.iter the maximal number of iterations.

step.size the step size of the descent method, between 0 and 1.

type.tnorm the type of t-norm. For more detail, please have a look at inference.

type.snorm the type of s-norm. For more detail, please have a look at inference.
type.implication.func

a value representing type of implication function. For more detail, please have a
look at WM

Details

This method was proposed by H. Nomura, I. Hayashi, and N. Wakami. FIR.DM uses simplified
fuzzy reasoning where the consequent part is a real number (a particular case within the Takagi
Sugeno Kang model), while the membership function on the antecedent part is expressed by an
isosceles triangle. So, in the learning phase, FIR.DM updates three parameters which are center
and width of the triangular and a real number on the consequent part using a descent method.

References

H. Nomura, I. Hayashi and N. Wakami, "A learning method of fuzzy inference rules by descent
method", IEEE International Conference on Fuzzy Systems, pp. 203 - 210 (1992).

20 FRBCS.CHI

See Also

DM.update, frbs.learn, and predict.

FRBCS.CHI FRBCS.CHI model building

Description

This is the internal function that implements the fuzzy rule-based classification system using Chi’s
technique (FRBCS.CHI). It is used to solve classification tasks. Users do not need to call it directly,
but just use frbs.learn and predict. This method is suitable only for classification problems.

Usage

FRBCS.CHI(range.data, data.train, num.labels, num.class,
type.mf = "TRIANGLE", type.tnorm = "MIN", type.snorm = "MAX",
type.implication.func = "ZADEH")

Arguments

range.data a matrix (2 × n) containing the range of the normalized data, where n is the
number of variables, and first and second rows are the minimum and maximum
values, respectively.

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

num.labels a matrix (1 × n), whose elements represent the number of labels (linguistic
terms); n is the number of variables.

num.class an integer number representing the number of labels (linguistic terms).

type.mf the type of the shape of the membership functions. See fuzzifier.

type.tnorm the type of t-norm. See inference.

type.snorm the type of s-norm. See inference.
type.implication.func

the type of implication function. See WM.

Details

This method was proposed by Z. Chi, H. Yan, and T. Pham that extends Wang and Mendel’s method
for tackling classification problems. Basically, the algorithm is quite similar as Wang and Mendel’s
technique. However, since it is based on the FRBCS model, Chi’s method only takes class labels
on each data to be consequent parts of fuzzy IF-THEN rules. In other words, we generate rules
as in Wang and Mendel’s technique (WM) and then we replace consequent parts with their classes.
Regarding calculating degress of each rule, they are determined by antecedent parts of the rules.
Redudant rules can be deleted by considering their degrees. Lastly, we obtain fuzzy IF-THEN rules
based on the FRBCS model.

FRBCS.eng 21

References

Z. Chi, H. Yan, T. Pham, "Fuzzy algorithms with applications to image processing and pattern
recognition", World Scientific, Singapore (1996).

See Also

FRBCS.eng, frbs.learn, and predict

FRBCS.eng FRBCS: prediction phase

Description

This function is the internal function of the fuzzy rule-based classification systems (FRBCS) to
compute the predicted values.

Usage

FRBCS.eng(object, newdata)

Arguments

object the frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

Value

A matrix of predicted values.

FRBCS.W FRBCS.W model building

Description

This is the internal function that implements the fuzzy rule-based classification system with weight
factor (FRBCS.W). It is used to solve classification tasks. Users do not need to call it directly, but
just use frbs.learn and predict. This method is suitable only for classification problems.

Usage

FRBCS.W(range.data, data.train, num.labels, num.class, type.mf,
type.tnorm = "MIN", type.snorm = "MAX",
type.implication.func = "ZADEH")

22 frbs.eng

Arguments

range.data a matrix (2 × n) containing the range of the normalized data, where n is the
number of variables, and first and second rows are the minimum and maximum
values, respectively.

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

num.labels a matrix (1 × n), whose elements represent the number of labels (linguistic
terms); n is the number of variables.

num.class an integer number representing the number of labels (linguistic terms).

type.mf the type of the shape of the membership functions.

type.tnorm the type of t-norm. See inference.

type.snorm the type of s-norm. See inference.
type.implication.func

the type of implication function. See WM.

Details

This method is adopted from Ishibuchi and Nakashima’s paper. Each fuzzy IF-THEN rule consists
of antecedent linguistic values and a single consequent class with certainty grades (weights). The
antecedent part is determined by a grid-type fuzzy partition from the training data. The consequent
class is defined as the dominant class in the fuzzy subspace corresponding to the antecedent part of
each fuzzy IF-THEN rule and the certainty grade is calculated from the ratio among the consequent
class. A class of the new instance is determined by the consequent class of the rule with the maximal
product of the compatibility grade and the certainty grade.

References

H. Ishibuchi and T. Nakashima, "Effect of rule weights in fuzzy rule-based classification systems",
IEEE Transactions on Fuzzy Systems, vol. 1, pp. 59 - 64 (2001).

See Also

FRBCS.eng, frbs.learn, and predict

frbs.eng The prediction phase

Description

This function is one of the main internal functions of the package. It determines the values within
the prediction phase.

Usage

frbs.eng(object, newdata)

frbs.gen 23

Arguments

object the frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

Details

This function involves four different processing steps on fuzzy rule-based systems. Firstly, the
rulebase (see rulebase) validates the consistency of the fuzzy IF-THEN rules form. Then, the
fuzzification (see fuzzifier) transforms crisp values into linguistic terms. Next, the inference
calculates the degree of rule strengths using the t-norm and the s-norm. Finally, the defuzzification
process calculates the results of the model using the Mamdani or the Takagi Sugeno Kang model.

Value

A list with the following items:

rule the fuzzy IF-THEN rules

varinp.mf a matrix to generate the shapes of the membership functions for the input vari-
ables

MF a matrix of the degrees of the membership functions

miu.rule a matrix of the degrees of the rules

func.tsk a matrix of the Takagi Sugeno Kang model for the consequent part of the fuzzy
IF-THEN rules

predicted.val a matrix of the predicted values

See Also

fuzzifier, rulebase, inference and defuzzifier.

frbs.gen The frbs model generator

Description

The purpose of this function is to generate a FRBS model from user-given input without a learning
process.

Usage

frbs.gen(range.data, num.fvalinput, names.varinput,
num.fvaloutput = NULL, varout.mf = NULL, names.varoutput = NULL,
rule, varinp.mf, type.model = "MAMDANI", type.defuz = "WAM",
type.tnorm = "MIN", type.snorm = "MAX", func.tsk = NULL,
colnames.var = NULL, type.implication.func = "ZADEH",
name = "Sim-0")

24 frbs.gen

Arguments

range.data a matrix (2 × n) containing the range of the data, where n is the number of
variables, and first and second rows are the minimum and maximum values,
respectively.

num.fvalinput a matrix representing the number of linguistic terms of each input variables.
For example: num.fvalinput <- matrix(c(3,2), nrow = 1)

means that there are two variables where the first variable has three linguistic
terms and the second one has two linguistic terms.

names.varinput a list containing names to the linguistic terms for input variables. See rulebase.

num.fvaloutput the number of linguistic terms of the output variable. This parameter is required
for the Mamdani model only.
For example: num.fvaloutput <- matrix(3, nrow = 1)

means there are 3 linguistic terms for the output variable.

varout.mf a matrix for constructing the membership functions of the output variable. The
form is the same as for the varinp.mf parameter. This parameter is required for
the Mamdani model only. See fuzzifier.

names.varoutput

a list giving names of the linguistic terms for the output variable. The form is
the same as for the names.varinput parameter. This parameter is required for
the Mamdani model only. See rulebase.

rule a list of fuzzy IF-THEN rules. There are some types of rule structures, for
example: Mamdani, Takagi Sugeno Kang, and fuzzy rule-based classification
systems (FRBCS). If we use the Mamdani model then the consequent part is
a linguistic term, but if we use Takagi Sugeno Kang then we build a matrix
representing linear equations in the consequent part. e.g., "a1", "and", "b1, "->",
"e1" means that "IF inputvar.1 is a1 and inputvar.2 is b1 THEN outputvar.1 is
e1". Make sure that each rule has a "->" sign. Furthermore, we are allowed to
use linguistic hedges (e.g., "extremely", "slightly", etc), negation (i.e., "not"),
and the "dont_care" value representing degree of membership is always 1. For
more detail, see rulebase.

varinp.mf a matrix for constructing the shapes of the membership functions. See how to
construct it in fuzzifier.

type.model the type of the model. There are three types available as follows.

• MAMDANI means we are using the Mamdani model.
• TSK means we are using the Takagi Sugeno Kang model.
• FRBCS means we are using fuzzy rule-based classification systems (FR-

BCS).

type.defuz the type of the defuzzification method. It is used in the Mamdani model only.
See defuzzifier.

type.tnorm the type of the t-norm method. See inference.

type.snorm the type of the s-norm method. See inference.

func.tsk a matrix of parameters of the function on the consequent part using the Takagi
Sugeno Kang model. This parameter must be defined when we are using Takagi
Sugeno Kang. See rulebase.

frbs.gen 25

colnames.var a list of names of input and output variables.
type.implication.func

a type of implication function. See WM.

name a name of the simulation.

Details

It can be used if rules have already been obtained manually, without employing the learning process.
In the examples shown, we generate a fuzzy model using frbs.gen and generate the fuzzy rule-
based systems step by step manually. Additionally, the examples show several scenarios as follows.

• Using frbs.gen for constructing the Mamdani model on a regression task.

• Using frbs.gen for constructing the Takagi Sugeno Kang model on a regression task.

• Constructing the Mamdani model by executing internal functions such as rulebase, fuzzifier,
inference, and defuzzifier for the Mamdani model.

• Using frbs.gen for constructing fuzzy rule-based classification systems (FRBCS) model.

Value

The frbs-object.

Examples

###
1. The following codes show how to generate a fuzzy model
using the frbs.gen function for regression tasks.
The following are three scenarios:
1a. Using the Mamdani model
1b. Using the Takagi Sugeno Kang model
1c. Using the Mamdani model and internal functions: fuzzifier, etc.
Note:
In the examples, let us consider four input variabels and one output variable.
Some variables could be shared together for other examples.
###

Define shape and parameters of membership functions of input variables.
Please see the fuzzifier function to construct the matrix.
It can be seen that in this case we employ TRAPEZOID as the membership functions.
varinp.mf <- matrix(c(2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA,

2, 0, 35, 75, NA, 3, 35, 75, 100, NA,
2, 0, 20, 40, NA, 1, 20, 50, 80, NA, 3, 60, 80, 100, NA,
2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA),
nrow = 5, byrow = FALSE)

Define number of linguistic terms of the input variables.
Suppose, we have 3, 2, 3, and 3 numbers of linguistic terms
for the first, second, third and fourth variables, respectively.
num.fvalinput <- matrix(c(3, 2, 3, 3), nrow=1)

26 frbs.gen

Give the names of the linguistic terms of each input variables.
varinput.1 <- c("a1", "a2", "a3")
varinput.2 <- c("b1", "b2")
varinput.3 <- c("c1", "c2", "c3")
varinput.4 <- c("d1", "d2", "d3")
names.varinput <- c(varinput.1, varinput.2, varinput.3, varinput.4)

Set interval of data.
range.data <- matrix(c(0,100, 0, 100, 0, 100, 0, 100, 0, 100), nrow=2)

Define inference parameters.
type.defuz <- "WAM"
type.tnorm <- "MIN"
type.snorm <- "MAX"
type.implication.func <- "ZADEH"

Give the name of simulation.
name <- "Sim-0"

Provide new data for testing.
newdata <- matrix(c(15, 80, 85, 85, 45, 75, 78, 70), nrow = 2, byrow = TRUE)
the names of variables
colnames.var <- c("input1", "input2", "input3", "input4", "output1")

###
1a. Using the Mamdani Model
##
Define number of linguistic terms of output variable.
In this case, we set the number of linguistic terms to 3.
num.fvaloutput <- matrix(c(3), nrow = 1)

Give the names of the linguistic terms of the output variable.
varoutput.1 <- c("e1", "e2", "e3")
names.varoutput <- c(varoutput.1)

Define the shapes and parameters of the membership functions of the output variables.
varout.mf <- matrix(c(2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA),

nrow = 5, byrow = FALSE)

Set type of model which is "MAMDANI" or "TSK" for Mamdani or
Takagi Sugeno Kang models, respectively.
In this case, we choose the Mamdani model.
type.model <- "MAMDANI"

Define the fuzzy IF-THEN rules; In this case, we provide two scenarios using different operators:
rule.or <- matrix(c("a1", "or", "b1", "or", "c1", "or", "d1", "->", "e1",

"a2", "and", "b2", "and", "c2", "and", "d2", "->", "e2",
"a3", "and", "b2", "and", "c2", "and", "d1", "->", "e3"),
nrow = 3, byrow = TRUE)

Define the fuzzy IF-THEN rules;
rule.and <- matrix(c("a1", "and", "b1", "and", "c1", "and", "d1", "->", "e1",

"a2", "and", "b2", "and", "c2", "and", "d2", "->", "e2",

frbs.gen 27

"a3", "and", "b2", "and", "c2", "and", "d1", "->", "e3"),
nrow = 3, byrow = TRUE)

Generate a fuzzy model with frbs.gen.
object.or <- frbs.gen(range.data, num.fvalinput, names.varinput,

num.fvaloutput, varout.mf, names.varoutput, rule.or,
varinp.mf, type.model, type.defuz, type.tnorm,
type.snorm, func.tsk = NULL, colnames.var, type.implication.func, name)

object.and <- frbs.gen(range.data, num.fvalinput, names.varinput,
num.fvaloutput, varout.mf, names.varoutput, rule.and,
varinp.mf, type.model, type.defuz, type.tnorm,
type.snorm, func.tsk = NULL, colnames.var, type.implication.func, name)

Plot the membership function.
plotMF(object.and)

Predicting using new data.
res.or <- predict(object.or, newdata)$predicted.val
res.and <- predict(object.and, newdata)$predicted.val

###
1b. Using the Takagi Sugeno Kang (TSK) Model
###
Define "TSK" for the Takagi Sugeno Kang model
type.model <- "TSK"

Define linear equations for consequent parts.
The following command means that we have three equation related to the rules we have.
e.g., the first equation is 1*inputvar.1 + 1*inputvar.2 + 5*inputvar.3 + 2*inputvar.4 + 1,
where inputvar.i is a value of the i-th input variable.
func.tsk <- matrix(c(1, 1, 5, 2, 1, 3, 1, 0.5, 0.1, 2, 1, 3, 2, 2, 2),

nrow = 3, byrow = TRUE)

Define the fuzzy IF-THEN rules;
For TSK model, it isn't necessary to put linguistic term in consequent parts.
Make sure that each rule has a "->" sign.
rule <- matrix(c("a1", "and", "b1", "and", "c1", "and", "d1", "->",

"a2", "and", "b2", "and", "c2", "and", "d2", "->",
"a3", "and", "b2", "and", "c2", "and", "d1", "->"),
nrow = 3, byrow = TRUE)

Generate a fuzzy model with frbs.gen.
It should be noted that for TSK model, we do not need to input:
num.fvaloutput, varout.mf, names.varoutput, type.defuz.
object <- frbs.gen(range.data, num.fvalinput, names.varinput,

num.fvaloutput = NULL, varout.mf = NULL, names.varoutput = NULL, rule,
varinp.mf, type.model, type.defuz = NULL, type.tnorm, type.snorm,

func.tsk, colnames.var, type.implication.func, name)

Plot the membership function.
plotMF(object)

28 frbs.gen

Predicting using new data.
res <- predict(object, newdata)$predicted.val

######################
1c. Using the same data as in the previous example, this example performs
step by step of the generation of a fuzzy rule-based system
######################
Using the Mamdani model.
type.model <- "MAMDANI"

Construct rules.
rule <- matrix(c("a1", "and", "b1", "and", "c1", "and", "d1", "->", "e1",

"a2", "and", "b2", "and", "c2", "and", "d2", "->", "e2",
"a3", "and", "b2", "and", "c2", "and", "d1", "->", "e3"),
nrow = 3, byrow = TRUE)

Check input data given by user.
rule <- rulebase(type.model, rule, func.tsk = NULL)

Fuzzification Module:
In this function, we convert crisp into linguistic values/terms
based on the data and the parameters of the membership function.
The output: a matrix representing the degree of the membership of the data
num.varinput <- ncol(num.fvalinput)
MF <- fuzzifier(newdata, num.varinput, num.fvalinput, varinp.mf)

Inference Module:
In this function, we will calculate the confidence factor on the antecedent for each rule
considering t-norm and s-norm.
miu.rule <- inference(MF, rule, names.varinput, type.tnorm, type.snorm)

Defuzzification Module.
In this function, we calculate and convert the linguistic values back into crisp values.
range.output <- range.data[, ncol(range.data), drop = FALSE]
result <- defuzzifier(newdata, rule, range.output, names.varoutput,

varout.mf, miu.rule, type.defuz, type.model, func.tsk = NULL)

###
2. The following codes show how to generate a fuzzy model
using the frbs.gen function for classification tasks using the Mamdani model.
###
define range of data.
Note. we only define range of input data.
range.data.input <- matrix(c(0, 1, 0, 1, 0, 1, 0, 1), nrow=2)

Define shape and parameters of membership functions of input variables.
Please see fuzzifier function to construct the matrix.
In this case, we are using TRIANGLE for membership functions.
varinp.mf <- matrix(c(1, 0, 0, 0.5, NA, 1, 0, 0.5, 1, NA, 1, 0.5, 1, 1, NA,

1, 0, 0, 0.5, NA, 1, 0, 0.5, 1, NA, 1, 0.5, 1, 1, NA,
1, 0, 0, 0.5, NA, 1, 0, 0.5, 1, NA, 1, 0.5, 1, 1, NA,
1, 0, 0, 0.5, NA, 1, 0, 0.5, 1, NA, 1, 0.5, 1, 1, NA),

frbs.gen 29

nrow = 5, byrow = FALSE)

Define number of linguistic terms of input variables.
Suppose, we have 3, 3, 3, and 3 numbers of linguistic terms
for first up to fourth variables, respectively.
num.fvalinput <- matrix(c(3, 3, 3, 3), nrow=1)

Give the names of the linguistic terms of each input variable.
varinput.1 <- c("v.1_a.1", "v.1_a.2", "v.1_a.3")
varinput.2 <- c("v.2_a.1", "v.2_a.2", "v.2_a.3")
varinput.3 <- c("v.3_a.1", "v.3_a.2", "v.3_a.3")
varinput.4 <- c("v.4_a.1", "v.4_a.2", "v.4_a.3")
names.varinput <- c(varinput.1, varinput.2, varinput.3, varinput.4)

Provide inference parameters.
type.tnorm <- "MIN"
type.snorm <- "MAX"
type.implication.func <- "ZADEH"
type.model <- "FRBCS"

Give the name of simulation.
name <- "Sim-0"

Provide new data for testing.
newdata<- matrix(c(0.45, 0.5, 0.89, 0.44, 0.51, 0.99, 0.1, 0.98, 0.51,

0.56, 0.55, 0.5), nrow = 3, byrow = TRUE)

the names of variables
colnames.var <- c("input1", "input2", "input3", "input4", "output1")

Construct rules.
It should be noted that on consequent parts we define categorical values instead of
linguistic terms.
rule <- matrix(

c("v.1_a.2", "and", "v.2_a.2", "and", "v.3_a.3", "and", "v.4_a.2", "->", "3",
"v.1_a.2", "and", "v.2_a.3", "and", "v.3_a.1", "and", "v.4_a.3", "->", "1",
"v.1_a.2", "and", "v.2_a.2", "and", "v.3_a.2", "and", "v.4_a.2", "->", "2"),
nrow = 3, byrow = TRUE)

Generate frbs object.
object <- frbs.gen(range.data = range.data.input, num.fvalinput,

names.varinput, num.fvaloutput = NULL, varout.mf = NULL,
names.varoutput = NULL, rule, varinp.mf, type.model,
type.defuz = NULL, type.tnorm, type.snorm, func.tsk = NULL,
colnames.var, type.implication.func, name)

Plot the shape of membership functions.
plotMF(object)

Predicting using new data.
res <- predict(object, newdata)

##

30 frbs.learn

3. The following example shows how to convert
the frbs model into frbsPMML
##
In this example, we are using the last object of FRBS.
Display frbsPMML in R
objPMML <- frbsPMML(object)

Write into a file with .frbsPMML extention
Not run: write.frbsPMML(objPMML, fileName="obj_frbsPMML")

Read the frbsPMML file into an R object of FRBS
obj <- read.frbsPMML("obj_frbsPMML.frbsPMML")
End(Not run)

frbs.learn The frbs model building function

Description

This is one of the central functions of the package. This function is used to generate/learn the model
from numerical data using fuzzy rule-based systems.

Usage

frbs.learn(data.train, range.data = NULL, method.type = c("WM"),
control = list())

Arguments

data.train a data frame or matrix (m × n) of data for the training process, where m is
the number of instances and n is the number of variables; the last column is
the output variable. It should be noted that the training data must be expressed
in numbers (numerical data). And, especially for classification tasks, the last
column representing class names/symbols isn’t allowed to have values 0 (zero).
In the other words, the categorical values 0 should be replaced with other values.

range.data a matrix (2 × n) containing the range of the data, where n is the number of
variables, and first and second rows are the minimum and maximum values, re-
spectively. It should be noted that for "FRBCS.W", "FRBCS.CHI", "GFS.GCCL",
"FH.GBML", and "SLAVE", n represents the number of input variables only (with-
out the output variable). It will be assigned as min/max of training data if it is
omitted.

method.type this parameter determines the learning algorithm to be used. The following
methods are implemented:

• "WM": Wang and Mendel’s technique to handle regression tasks. See WM;
• "SBC": subtractive clustering method to handle regression tasks. See SBC;
• "HYFIS": hybrid neural fuzzy inference systems to handle regression tasks.

See HyFIS;

frbs.learn 31

• "ANFIS": adaptive neuro-fuzzy inference systems to handle regression tasks.
See ANFIS;

• "FRBCS.W": fuzzy rule-based classification systems with weight factor based
on Ishibuchi’s method to handle classification tasks. See FRBCS.W;

• "FRBCS.CHI": fuzzy rule-based classification systems based on Chi’s method
to handle classification tasks. See FRBCS.CHI;

• "DENFIS": dynamic evolving neuro-fuzzy inference systems to handle re-
gression tasks. See DENFIS;

• "FS.HGD": fuzzy system using heuristic and gradient descent method to
handle regression tasks. See FS.HGD;

• "FIR.DM": fuzzy inference rules by descent method to handle regression
tasks. See FIR.DM;

• "GFS.FR.MOGUL": genetic fuzzy systems for fuzzy rule learning based on
the MOGUL methodology to handle regression tasks. See GFS.FR.MOGUL;

• "GFS.THRIFT": Thrift’s technique based on genetic algorithms to handle
regression tasks. See GFS.Thrift;

• "GFS.GCCL": Ishibuchi’s method based on genetic cooperative-competitive
learning to handle classification tasks. See GFS.GCCL;

• "FH.GBML": Ishibuchi’s method based on hybridization of genetic cooperative-
competitive learning and Pittsburgh to handle classification tasks. See FH.GBML;

• "SLAVE": structural learning algorithm on vague environment to handle
classification tasks. See SLAVE;

• "GFS.LT.RS": genetic algorithm for lateral tuning and rule selection. See
GFS.LT.RS

control a list containing all arguments, depending on the learning algorithm to use. The
following list are parameters required for each methods, whereas their descrip-
tions will be explained later on.

• WM:
list(num.labels, type.mf, type.tnorm, type.defuz,
type.implication.func, name)

• HYFIS:
list(num.labels, max.iter, step.size, type.tnorm,
type.defuz, type.implication.func, name)

• ANFIS and FIR.DM:
list(num.labels, max.iter, step.size,
type.tnorm, type.implication.func , name)

• SBC:
list(r.a, eps.high, eps.low, name)

• FS.HGD:
list(num.labels, max.iter, step.size, alpha.heuristic,
type.tnorm, type.implication.func, name)

• FRBCS.W and FRBCS.CHI:
list(num.labels, type.mf, type.tnorm,
type.implication.func, name)

• DENFIS method:
list(Dthr, max.iter, step.size, d, name)

32 frbs.learn

• GFS.FR.MOGUL:
list(persen_cross, max.iter, max.gen, max.tune,
persen_mutant, epsilon, name)

• GFS.THRIFT method:
list(popu.size, num.labels, persen_cross,
max.gen, persen_mutant, type.tnorm, type.defuz,
type.implication.func, name)

• GFS.GCCL:
list(popu.size, num.class, num.labels, persen_cross,
max.gen, persen_mutant, name)

• FH.GBML:
list(popu.size, max.num.rule, num.class, persen_cross,
max.gen, persen_mutant, p.dcare, p.gccl, name)

• SLAVE:
list(num.class, num.labels, persen_cross, max.iter,
max.gen, persen_mutant, k.lower, k.upper, epsilon, name)

• GFS.LT.RS:
list(popu.size, num.labels, persen_mutant, max.gen,
mode.tuning, type.tnorm, type.implication.func,
type.defuz, rule.selection, name)

Description of the control Parameters

• num.labels: a positive integer to determine the number of labels (linguistic
terms). The default value is 7.

• type.mf: the following type of the membership function. The default value
is GAUSSIAN. For more detail, see fuzzifier.

– TRIANGLE: it refers triangular shape.
– TRAPEZOID: it refers trapezoid shape.
– GAUSSIAN: it refers gaussian shape.
– SIGMOID: it refers sigmoid.
– BELL: it refers generalized bell.

• type.defuz: the type of the defuzzification method as follows. The default
value is WAM. For more detail, see defuzzifier.

– WAM: the weighted average method.
– FIRST.MAX: the first maxima.
– LAST.MAX: the last maxima.
– MEAN.MAX: the mean maxima.
– COG: the modified center of gravity (COG).

• type.tnorm: the type of conjunction operator (t-norm). The following
are options of t-norm available. For more detail, please have a look at
inference. The default value is MIN.

– MIN means standard type (minimum).
– HAMACHER means Hamacher product.
– YAGER means Yager class (with tao = 1).
– PRODUCT means product.

frbs.learn 33

– BOUNDED mean bounded product.
• type.snorm: the type of disjunction operator (s-norm). The following

are options of s-norm available. For more detail, please have a look at
inference. The default value is MAX.

– MAX means standard type (maximum).
– HAMACHER means Hamacher sum.
– YAGER means Yager class (with tao = 1).
– SUM means sum.
– BOUNDED mean bounded sum.

• type.implication.func: the type of implication function. The following
are options of implication function available: DIENES_RESHER, LUKASIEWICZ,
ZADEH, GOGUEN, GODEL, SHARP, MIZUMOTO, DUBOIS_PRADE, and MIN. For
more detail, please have a look at WM. The default value is ZADEH.

• name: a name for the model. The default value is "sim-0".
• max.iter: a positive integer to determine the maximal number of itera-

tions. The default value is 10.
• step.size: the step size of the gradient descent, a real number between 0

and 1. The default value is 0.01.
• r.a: a positive constant which is effectively the radius defining a neighbor-

hood. The default value is 0.5.
• eps.high: an upper threshold value. The default value is 0.5.
• eps.low: a lower threshold value. The default value is 0.15.
• alpha.heuristic: a positive real number representing a heuristic value.

The default value is 1.
• Dthr: the threshold value for the envolving clustering method (ECM), be-

tween 0 and 1. The default value is 0.1.
• d: a parameter for the width of the triangular membership function. The

default value is 2.
• persen_cross: a probability of crossover. The default value is 0.6.
• max.gen: a positive integer to determine the maximal number of genera-

tions of the genetic algorithm. The default value is 10.
• max.tune: a positive integer to determine the maximal number of tuning

iterations. The default value is 10.
• persen_mutant: a probability of mutation. The default value is 0.3.
• epsilon: a real number between 0 and 1 representing the level of general-

ization. A high epsilon can lead to overfitting. The default value is 0.9.
• popu.size: the size of the population which is generated in each genera-

tion. The default value is 10.
• max.num.rule: the maximum size of the rules. The default value is 5.
• num.class: the number of classes.
• p.dcare: a probability of "don’t care" attributes. The default value is 0.5.
• p.gccl: a probability of the GCCL process. The default value is 0.5.
• k.lower: a lower bound of the noise threshold with interval between 0 and

1. The default value is 0.

34 frbs.learn

• k.upper: an upper bound of the noise threshold with interval between 0
and 1. The default value is 1.

• mode.tuning: a type of lateral tuning which are "LOCAL" or "GLOBAL".
The default value is "GLOBAL".

• rule.selection:a boolean value representing whether performs rule se-
lection or not. The default value is "TRUE".

Details

This function makes accessible all learning methods that are implemented in this package. All of
the methods use this function as interface for the learning stage, so users do not need to call other
functions in the learning phase. In order to obtain good results, users need to adjust some parameters
such as the number of labels, the type of the shape of the membership function, the maximal number
of iterations, the step size of the gradient descent, or other method-dependent parameters which are
collected in the control parameter. After creating the model using this function, it can be used to
predict new data with predict.

Value

The frbs-object.

See Also

predict for the prediction phase, and the following main functions of each of the methods for
theoretical background and references: WM, SBC, HyFIS, ANFIS, FIR.DM, DENFIS, FS.HGD, FRBCS.W,
FRBCS.CHI, GFS.FR.MOGUL, GFS.Thrift, GFS.GCCL, FH.GBML, GFS.LT.RS, and SLAVE.

Examples

##################################
I. Regression Problem
Suppose data have two input variables and one output variable.
We separate them into training, fitting, and testing data.
data.train, data.fit, data.test, and range.data are inputs
for all regression methods.
###################################
Take into account that the simulation might take a long time
depending on the hardware you are using. The chosen parameters
may not be optimal.
Data must be in data.frame or matrix form and the last column
is the output variable/attribute.
The training data must be expressed in numbers (numerical data).
data.train <- matrix(c(5.2, -8.1, 4.8, 8.8, -16.1, 4.1, 10.6, -7.8, 5.5, 10.4, -29.0,

5.0, 1.8, -19.2, 3.4, 12.7, -18.9, 3.4, 15.6, -10.6, 4.9, 1.9,
-25.0, 3.7, 2.2, -3.1, 3.9, 4.8, -7.8, 4.5, 7.9, -13.9, 4.8,
5.2, -4.5, 4.9, 0.9, -11.6, 3.0, 11.8, -2.1, 4.6, 7.9, -2.0,
4.8, 11.5, -9.0, 5.5, 10.6, -11.2, 4.5, 11.1, -6.1, 4.7, 12.8,
-1.0, 6.6, 11.3, -3.6, 5.1, 1.0, -8.2, 3.9, 14.5, -0.5, 5.7,
11.9, -2.0, 5.1, 8.1, -1.6, 5.2, 15.5, -0.7, 4.9, 12.4, -0.8,
5.2, 11.1, -16.8, 5.1, 5.1, -5.1, 4.6, 4.8, -9.5, 3.9, 13.2,
-0.7, 6.0, 9.9, -3.3, 4.9, 12.5, -13.6, 4.1, 8.9, -10.0,

frbs.learn 35

4.9, 10.8, -13.5, 5.1), ncol = 3, byrow = TRUE)
colnames(data.train) <- c("inp.1", "inp.2", "out.1")

data.fit <- data.train[, -ncol(data.train)]

data.test <- matrix(c(10.5, -0.9, 5.8, -2.8, 8.5, -0.6, 13.8, -11.9, 9.8, -1.2, 11.0,
-14.3, 4.2, -17.0, 6.9, -3.3, 13.2, -1.9), ncol = 2, byrow = TRUE)

range.data <- matrix(apply(data.train, 2, range), nrow = 2)

###
I.1 Example: Constructing an FRBS model using Wang & Mendel
###
method.type <- "WM"

collect control parameters into a list
num.labels = 3 means we define 3 as the number of linguistic terms
control.WM <- list(num.labels = 3, type.mf = "GAUSSIAN", type.tnorm = "MIN",
type.defuz = "WAM", type.implication.func = "ZADEH", name = "Sim-0")

generate the model and save it as object.WM
object.WM <- frbs.learn(data.train, range.data, method.type, control.WM)

###
I.2 Example: Constructing an FRBS model using SBC
###
Not run: method.type <- "SBC"
control.SBC <- list(r.a = 0.5, eps.high = 0.5, eps.low = 0.15, name = "Sim-0")

object.SBC <- frbs.learn(data.train, range.data, method.type, control.SBC)
End(Not run)

###
I.3 Example: Constructing an FRBS model using HYFIS
###
Not run: method.type <- "HYFIS"

control.HYFIS <- list(num.labels = 5, max.iter = 50, step.size = 0.01, type.tnorm = "MIN",
type.defuz = "COG", type.implication.func = "ZADEH", name = "Sim-0")

object.HYFIS <- frbs.learn(data.train, range.data, method.type, control.HYFIS)
End(Not run)

###
I.4 Example: Constructing an FRBS model using ANFIS
###
Not run: method.type <- "ANFIS"

control.ANFIS <- list(num.labels = 5, max.iter = 10, step.size = 0.01, type.tnorm = "MIN",
type.implication.func = "ZADEH", name = "Sim-0")

object.ANFIS <- frbs.learn(data.train, range.data, method.type, control.ANFIS)
End(Not run)

36 frbs.learn

###
I.5 Example: Constructing an FRBS model using DENFIS
###

Not run: control.DENFIS <- list(Dthr = 0.1, max.iter = 10, step.size = 0.001, d = 2,
name = "Sim-0")

method.type <- "DENFIS"

object.DENFIS <- frbs.learn(data.train, range.data, method.type, control.DENFIS)
End(Not run)

###
I.6 Example: Constructing an FRBS model using FIR.DM
###
Not run: method.type <- "FIR.DM"

control.DM <- list(num.labels = 5, max.iter = 10, step.size = 0.01, type.tnorm = "MIN",
type.implication.func = "ZADEH", name = "Sim-0")

object.DM <- frbs.learn(data.train, range.data, method.type, control.DM)
End(Not run)

###
I.7 Example: Constructing an FRBS model using FS.HGD
###
Not run: method.type <- "FS.HGD"

control.HGD <- list(num.labels = 5, max.iter = 10, step.size = 0.01,
alpha.heuristic = 1, type.tnorm = "MIN",
type.implication.func = "ZADEH", name = "Sim-0")

object.HGD <- frbs.learn(data.train, range.data, method.type, control.HGD)
End(Not run)

###
I.8 Example: Constructing an FRBS model using GFS.FR.MOGUL
###
Not run: method.type <- "GFS.FR.MOGUL"

control.GFS.FR.MOGUL <- list(persen_cross = 0.6,
max.iter = 5, max.gen = 2, max.tune = 2, persen_mutant = 0.3,
epsilon = 0.8, name="sim-0")

object.GFS.FR.MOGUL <- frbs.learn(data.train, range.data,
method.type, control.GFS.FR.MOGUL)

End(Not run)

###
I.9 Example: Constructing an FRBS model using Thrift's method (GFS.THRIFT)
###
Not run: method.type <- "GFS.THRIFT"

control.Thrift <- list(popu.size = 6, num.labels = 3, persen_cross = 1,
max.gen = 5, persen_mutant = 1, type.tnorm = "MIN",
type.defuz = "COG", type.implication.func = "ZADEH",

frbs.learn 37

name="sim-0")
object.Thrift <- frbs.learn(data.train, range.data, method.type, control.Thrift)
End(Not run)

##
I.10 Example: Constructing an FRBS model using
genetic for lateral tuning and rule selection (GFS.LT.RS)
###
Set the method and its parameters
Not run: method.type <- "GFS.LT.RS"

control.lt.rs <- list(popu.size = 5, num.labels = 5, persen_mutant = 0.3,
max.gen = 10, mode.tuning = "LOCAL", type.tnorm = "MIN",
type.implication.func = "ZADEH", type.defuz = "WAM",
rule.selection = TRUE, name="sim-0")

Generate fuzzy model
object.lt.rs <- frbs.learn(data.train, range.data, method.type, control.lt.rs)
End(Not run)

###
II. Classification Problems
###
The iris dataset is shuffled and divided into training and
testing data. Bad results in the predicted values may result
from casual imbalanced classes in the training data.
Take into account that the simulation may take a long time
depending on the hardware you use.
One may get better results with other parameters.
Data are in data.frame or matrix form and the last column is
the output variable/attribute
The data must be expressed in numbers (numerical data).

data(iris)
irisShuffled <- iris[sample(nrow(iris)),]
irisShuffled[,5] <- unclass(irisShuffled[,5])
tra.iris <- irisShuffled[1:105,]
tst.iris <- irisShuffled[106:nrow(irisShuffled),1:4]
real.iris <- matrix(irisShuffled[106:nrow(irisShuffled),5], ncol = 1)

Please take into account that the interval needed is the range of input data only.
range.data.input <- matrix(apply(iris[, -ncol(iris)], 2, range), nrow = 2)

###
II.1 Example: Constructing an FRBS model using
FRBCS with weighted factor based on Ishibuchi's method
###
generate the model
Not run: method.type <- "FRBCS.W"
control <- list(num.labels = 3, type.mf = "TRIANGLE", type.tnorm = "MIN",

type.implication.func = "ZADEH", name = "sim-0")

object <- frbs.learn(tra.iris, range.data.input, method.type, control)

38 frbs.learn

conduct the prediction process
res.test <- predict(object, tst.iris)
End(Not run)

###
II.2 Example: Constructing an FRBS model using
FRBCS based on Chi's method
###
generate the model
Not run: method.type <- "FRBCS.CHI"
control <- list(num.labels = 7, type.mf = "TRIANGLE", type.tnorm = "MIN",

type.implication.func = "ZADEH", name = "sim-0")

object <- frbs.learn(tra.iris, range.data.input, method.type, control)

conduct the prediction process
res.test <- predict(object, tst.iris)
End(Not run)

###
II.3 The example: Constructing an FRBS model using GFS.GCCL
###
Not run: method.type <- "GFS.GCCL"

control <- list(popu.size = 5, num.class = 3, num.labels = 5, persen_cross = 0.9,
max.gen = 2, persen_mutant = 0.3,
name="sim-0")

Training process
The main result of the training is a rule database which is used later for prediction.
object <- frbs.learn(tra.iris, range.data.input, method.type, control)

Prediction process
res.test <- predict(object, tst.iris)
End(Not run)

###
II.4 Example: Constructing an FRBS model using FH.GBML
###
Not run: method.type <- "FH.GBML"

control <- list(popu.size = 5, max.num.rule = 5, num.class = 3,
persen_cross = 0.9, max.gen = 2, persen_mutant = 0.3, p.dcare = 0.5,

p.gccl = 1, name="sim-0")

Training process
The main result of the training is a rule database which is used later for prediction.
object <- frbs.learn(tra.iris, range.data.input, method.type, control)

Prediction process
res.test <- predict(object, tst.iris)
End(Not run)

frbsData 39

###
II.5 The example: Constructing an FRBS model using SLAVE
###
Not run: method.type <- "SLAVE"

control <- list(num.class = 3, num.labels = 5,
persen_cross = 0.9, max.iter = 5, max.gen = 3, persen_mutant = 0.3,

k.lower = 0.25, k.upper = 0.75, epsilon = 0.1, name="sim-0")

Training process
The main result of the training is a rule database which is used later for prediction.
object <- frbs.learn(tra.iris, range.data.input, method.type, control)

Prediction process
res.test <- predict(object, tst.iris)
End(Not run)

frbsData Data set of the package

Description

The package includes embedded versions of the Mackey-Glass chaotic time series and the Gas
Furnance dataset.

Details

Mackey-Glass chaotic time series
The Mackey-Glass chaotic time series is defined by the following delayed differential equation:

dx(t)/dt = (a ∗ x(t− τ)/(1 + x(t− τ)10))− b ∗ x(t)
For this dataset, we generated 1000 samples, with input parameters as follows:

• a = 0.2

• b = 0.1

• τ = 17

• x0 = 1.2

• dt = 1

The dataset is embedded in the following way:

input variables: x(t− 18), x(t− 12), x(t− 6), x(t)

output variable: x(t+ 6)

Gas Furnance dataset
The Gas Furnance dataset is taken from Box and Jenkins. It consists of 292 consecutive values of
methane at time (t − 4), and the CO2 produced in a furnance at time (t − 1) as input variables,
with the produced CO2 at time (t) as an output variable. So, each training data point consists of
[u(t− 4), y(t− 1), y(t)], where u is methane and y is CO2.

40 frbsObjectFactory

References

G. E. P. Box and G. M. Jenkins, "Time series analysis, forecasting and control", San Fransisco, CA:
Holden Day (1970).

M. Mackey and L. Glass, "Oscillation and chaos in physiological control systems", Science, vol.
197, pp. 287 - 289 (1977).

frbsObjectFactory The object factory for frbs objects

Description

This function creates objects of type frbs. Currently, its implementation is very basic and does no
argument checking, as it is only used internally.

Usage

frbsObjectFactory(mod)

Arguments

mod a list containing all the attributes for the object

Details

The members of the frbs object depend on the used learning method. The following list describes
all of the members that can be present.

num.labels the number of linguistic terms for the variables

varout.mf a matrix to generate the shapes of the membership functions for the output variable.
The first row represents the shape of the membership functions, the other rows contain the
parameters that have been generated. Whether the values of parameters within the matrix are
normalized to lie between 0 and 1 or not depends on the selected method.

rule the fuzzy IF-THEN rules; In the GFS.FR.MOGUL case, a rule refers to the parameter values of
the membership function which represents the rule.

rule.data.num the fuzzy IF-THEN rules in integer format.

varinp.mf a matrix to generate the shapes of the membership functions for the input variables.
The first row represents the shape of the membership functions, the other rows contain the
non NA values representing the parameters related with their type of membership function.
For example, TRAPEZOID, TRIANGLE, and GAUSSIAN have four, three, and two values as their
parameters, respectively. Whether the values of parameters within the matrix are normalized
to lie between 0 and 1 or not depends on the selected method.

type.model the type of model. Here, MAMDANI refers to the Mamdani model, and TSK refers to the
Takagi Sugeno Kang model on the consequence part.

func.tsk a matrix of the Takagi Sugeno Kang model consequent part of the fuzzy IF-THEN rules.

class a matrix representing classes of FRBCS model

frbsPMML 41

num.labels a number of linguistic terms on each variables/attributes.

type.defuz the type of the defuzzification method.

type.tnorm the type of the t-norm method.

type.snorm the type of the s-norm method.

type.mf the type of shapes of membership functions.

type.implication.func the type of the implication function.

method.type the type of the selected method.

name the name given to the model.

range.data.ori range of the original data (before normalization).

cls cluster centers.

Dthr the boundary parameter of the DENFIS method.

d the multiplier parameters of the DENFIS method.

r.a the neighborhood factor of SBC.

degree.rule certainty degree of rules.

rule.data.num a matrix representing the rules in integer form.

grade.cert grade of certainty for classification problems.

alpha.heuristic a parameter for the heuristic of the FS.HGD method.

var.mf.tune a matrix of parameters of membership function for lateral tuning.

mode.tuning a type of lateral tuning.

rule.selection a boolean of rule selection.

colnames.var the names of variables.

Value

an object of type frbs

frbsPMML The frbsPMML generator

Description

It is the main function used for generating the frbsPMML format. In this package, we provide inter-
faces for writing and reading frbsPMML to/from a text file. See write.frbsPMML and read.frbsPMML.

Usage

frbsPMML(model, model.name = "frbs_model", app.name = "frbs",
description = NULL, copyright = NULL,
algorithm.name = model$method.type, ...)

42 frbsPMML

Arguments

model an frbs model.

model.name a string representing the model name.

app.name a string representing an application name.

description a string representing the simulation description.

copyright a copyright of simulation.

algorithm.name a string representing the algorithm name.

... other parameters

Details

frbsPMML is a universal framework for representing FRBS models, which is a format adopted from
the Predictive Model Markup Language (PMML). PMML is a format constructed by an XML-based
language to provide a standard for describing models produced by data mining and machine learn-
ing algorithms. A main contribution of PMML is to provide interoperable schemata of predictive
models. Using PMML, we can easily perform these tasks as our models are documented in an
XML-based language. Human experts can also update and modify the model on the files directly.

Since PMML is an XML-based language, the specification is defined by an XML Schema as recom-
mended by the World Wide Web Consortium (W3C). The PMML format is specified by the main
tag PMML that contains some components. In the following, we describe the main components:

• Header: It contains general information about the PMML document, such as copyright infor-
mation for the model, its description, application, and timestamp of generation.

• DataDictionary: It contains information related to fields or variables, such as number, names,
types, and value ranges of variables.

• MODEL-ELEMENT: It is a main part of the PMML document that consists of models sup-
ported by PMML. In each model, there are several components embedded in the element, such
as MiningSchema and Output. MiningSchema specifies outlier treatment, a missing value re-
placement policy, and missing value treatment, whereas Output shows a description of the
output variable. For example, in a clustering model, we define a schema representing the
cluster centers that are included in the ClusteringModel element.

Besides these components, there are some optional elements, such as MiningBuildTask, Trans-
formationDictionary, and Extension. More detailed information about PMML can be found in
(Guazzelli et al., 2009).

Three models, which can be used for handling regression and classification tasks, are specified by
the proposed representations: Mamdani, Takagi Sugeno Kang, and fuzzy rule-based classification
systems. There are the following benefits offered by frbsPMML, as follows:

• Interoperability: It is a standard format for representing many models without depending on
any programming languages (e.g., Java, Python, and C++) and platforms (e.g., Windows,
Linux, and Mac).

• Tranparency: Since it is formed based on XML Schema containing formal definitions of the
available elements, we can understand FRBS models as written in frbsPMML.

frbsPMML 43

• Interpretability: frbsPMML expresses rulebase, database, and inference schema in simple
ways. For example, rulebase is constructed recursively, so that besides it meets to the mathe-
matical logic (predicate), we can define different operators (i.e., and and or) in one rule.

• Flexibility: Since frbsPMML is based XML, human experts can easily modify and improve a
model in the text file directly.

• Reproducibility: Sicen frbsPMML is a universal representation, it allows us to store, share,
execute, and reproduce an FRBS model.

Value

FRBS model in frbsPMML format

References

A. Guazzelli, M. Zeller, W.C. Lin, and G. Williams., "pmml: An open standard for sharing models",
The R Journal, Vol. 1, No. 1, pp. 60-65 (2009).

Data Mining Group, http://www.dmg.org/.

Examples

This example shows how to construct a frbsPMML file of the frbs model
Even though we are using MAMDANI model, other models have the same way
##
1. Produce frbs model, for example: we perform Wang & Mendel's technique (WM)
Input data
Not run: data(frbsData)
data.train <- frbsData$GasFurnance.dt[1 : 204,]
data.fit <- data.train[, 1 : 2]
data.tst <- frbsData$GasFurnance.dt[205 : 292, 1 : 2]
real.val <- matrix(frbsData$GasFurnance.dt[205 : 292, 3], ncol = 1)
range.data <- matrix(c(-2.716, 2.834, 45.6, 60.5, 45.6, 60.5), nrow = 2)

Set the method and its parameters
method.type <- "WM"
control <- list(num.labels = 3, type.mf = "GAUSSIAN", type.defuz = "WAM",

type.tnorm = "MIN", type.implication.func = "ZADEH",
name = "sim-0")

Generate fuzzy model
object <- frbs.learn(data.train, range.data, method.type, control)

2. Write frbsPMML file
by calling frbsPMML(), the frbsPMML format will be displayed in R console
frbsPMML(object)
End(Not run)

44 FS.HGD

FS.HGD FS.HGD model building

Description

This is the internal function that implements the simplified TSK fuzzy rule generation method using
heuristics and gradient descent method (FS.HGD). It is used to solve regression tasks. Users do not
need to call it directly, but just use frbs.learn and predict.

Usage

FS.HGD(data.train, num.labels, max.iter = 100, step.size = 0.01,
alpha.heuristic = 1, type.tnorm = "MIN", type.snorm = "MAX",
type.implication.func = "ZADEH")

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

num.labels a matrix (1× n), whose elements represent the number of labels (fuzzy terms);
n is the number of variables.

max.iter maximal number of iterations.

step.size step size of the descent method.
alpha.heuristic

a positive real number which is the heuristic parameter.

type.tnorm the type of t-norm. For more detail, please have a look at inference.

type.snorm the type of s-norm. For more detail, please have a look at inference.
type.implication.func

a value representing type of implication function. For more detail, please have a
look at WM.

Details

This method was proposed by K. Nozaki, H. Ishibuchi, and H. Tanaka. It uses fuzzy IF-THEN
rules with nonfuzzy singletons (i.e. real numbers) in the consequent parts. The techniques of space
partition are implemented to generate the antecedent part, while the initial consequent part of each
rule is determined by the weighted mean value of the given training data. Then, the gradient descent
method updates the value of the consequent part. Futhermore, the heuristic value given by the user
affects the value of weight of each data.

References

H. Ishibuchi, K. Nozaki, H. Tanaka, Y. Hosaka, and M. Matsuda, "Empirical study on learning in
fuzzy systems by rice taste analysis", Fuzzy Set and Systems, vol. 64, no. 2, pp. 129 - 144 (1994).

fuzzifier 45

See Also

frbs.learn, predict, and HGD.update

fuzzifier Transforming from crisp set into linguistic terms

Description

Fuzzification refers to the process of transforming a crisp set into linguistic terms.

Usage

fuzzifier(data, num.varinput, num.labels.input, varinp.mf)

Arguments

data a matrix of data containing numerical elements.

num.varinput number of input variables.
num.labels.input

the number of labels of the input variables.

varinp.mf a matrix containing the parameters to form the membership functions. See the
Detail section.

Details

In this function, there are five shapes of membership functions implemented, namely TRIANGLE,
TRAPEZOID, GAUSSIAN, SIGMOID, and BELL. They are represented by a matrix that the dimension
is (5, n) where n is a multiplication the number of linguistic terms/labels and the number of input
variables. The rows of the matrix represent: The first row is the type of membership function,
where 1 means TRIANGLE, 2 means TRAPEZOID in left side, 3 means TRAPEZOID in right side, 4
means TRAPEZOID in the middle, 5 means GAUSSIAN, 6 means SIGMOID, and 7 means BELL. And,
the second up to fifth row indicate the corner points to construct the functions.

• TRIANGLE has three parameters (a, b, c), where b is the center point of the TRIANGLE, and a
and c are the left and right points, respectively.

• TRAPEZOID has four parameters (a, b, c, d).

• GAUSSIAN has two parameters (mean and variance).

• SIGMOID has two parameters (γ and c) for representing steepness of the function and distance
from the origin, respectively.

• BELL has three parameters (a, b, c).

For example:

varinp.mf <- matrix(c(2,1,3,2,3,0,30,60,0,40,20,50,80,

30,80,40,70,100,60,100,0,0,100,0,100), nrow=5, byrow=TRUE)

46 GFS.FR.MOGUL

Value

A matrix of the degree of each linguistic terms based on the shape of the membership functions

See Also

defuzzifier, rulebase, and inference

GFS.FR.MOGUL GFS.FR.MOGUL model building

Description

This is the internal function that implements genetic fuzzy systems for fuzzy rule learning based on
the MOGUL methodology (GFS.FR.MOGUL). It is used to solve regression tasks. Users do not
need to call it directly, but just use frbs.learn and predict.

Usage

GFS.FR.MOGUL(data.train, persen_cross = 0.6, persen_mutant = 0.3,
max.iter = 10, max.gen = 10, max.tune = 10, range.data.ori,
epsilon = 0.4)

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

persen_cross a real number between 0 and 1 determining the probability of crossover.

persen_mutant a real number between 0 and 1 determining the probability of mutation.

max.iter the maximal number of iterations.

max.gen the maximal number of generations of the genetic algorithm.

max.tune the maximal number of tuning iterations.

range.data.ori a matrix containing the ranges of the original data.

epsilon a real number between 0 and 1 determining the boundary of covering factor.

Details

This method was proposed by Herrera et al. GFS.FR.MOGUL implements a genetic algorithm de-
termining the structure of the fuzzy IF-THEN rules and the membership function parameters. There
are two general types of fuzzy IF-THEN rules, namely the descriptive and the approximative/free
semantic approaches. A descriptive approach means that the linguistic labels represent a real-world
semantic; the linguistic labels are uniformly defined for all rules. In contrast, in the approxima-
tive approach there isn’t any associated linguistic label. This method is based on the latter one.
We model a fuzzy IF-THEN rule on a chromosome which consists of the parameter values of the

GFS.FR.MOGUL.test 47

membership function. So, every rule has its own membership function values. A population con-
tains many such generated chromosomes, based on the iterative rule learning approach (IRL). IRL
means that the chromosomes will be generated one by one, taking into account the fitness value
and covering factor, until there are sufficient chromosomes in the population. After having obtained
the population, the genetic algorithm is started, using the genetic operators selection, mutation, and
crossover.

References

F. Herrera, M. Lozano, and J.L. Verdegay, "A learning process for fuzzy control rules using genetic
algorithms", Fuzzy Sets and Systems, vol. 100, pp. 143 - 158 (1998).

O. Cordon, M.J. del Jesus, F. Herrera, and M. Lozano, "MOGUL: A methodology to obtain ge-
netic fuzzy rule-based systems under the iterative rule learning approach", International Journal of
Intelligent Systems, vol. 14, pp. 1123 - 1153 (1999).

See Also

GFS.FR.MOGUL.test, frbs.learn, and predict

GFS.FR.MOGUL.test GFS.FR.MOGUL: The prediction phase

Description

This function is the internal function of the GFS.FR.MOGUL method to compute the predicted
values.

Usage

GFS.FR.MOGUL.test(object, newdata)

Arguments

object the frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

Value

A matrix of predicted values.

48 GFS.GCCL

GFS.GCCL GFS.GCCL model building

Description

This is the internal function that implements the Ishibuchi’s method based on genetic cooperative-
competitive learning (GFS.GCCL). It is used to handle classification tasks. Users do not need to
call it directly, but just use frbs.learn and predict.

Usage

GFS.GCCL(data.train, popu.size = 10, range.data.input, num.labels,
persen_cross = 0.6, persen_mutant = 0.3, max.gen = 10,
range.data.ori)

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

popu.size the size of the population which is generated in each generation.
range.data.input

a matrix containing the ranges of the normalized input data.

num.labels a matrix describing the number of linguistic terms.

persen_cross a real number between 0 and 1 representing the probability of crossover.

persen_mutant a real number between 0 and 1 representing the probability of mutation.

max.gen the maximal number of generations for the genetic algorithm.

range.data.ori a matrix containing the ranges of the input data.

Details

This method is based on Ishibuchi’s method. In this method, a chromosome describes each linguis-
tic IF-THEN rule using integer as its representation of the antecedent part. In the consequent part of
the fuzzy rules, the heuristic method is applied to automatically generate the class. The evaluation
is calculated for each rule which means that the performance is not based on the entire rule set. The
outline of the method is as follows.

• Step 1: Generate an initial population of fuzzy IF-THEN rules.

• Step 2: Evaluate each fuzzy IF-THEN rule in the current population.

• Step 3: Generate new fuzzy IF-THEN rules by genetic operators.

• Step 4: Replace a part of the current population with the newly generated rules.

• Step 5: Terminate the algorithm if a stopping condition is satisfied, otherwise return to Step 2.

Additionally, to handle high dimensional data, this method uses "don’t care" attributes on the an-
tecedent fuzzy set.

GFS.GCCL.eng 49

References

H. Ishibuchi, T. Nakashima, and T. Murata, "Performance evaluation of fuzzy classifier systems for
multidimensional pattern classification problems", IEEE trans. on Systems, Man, and Cybernetics
- Part B: Sybernetics, vol. 29. no. 5, pp. 601 - 618 (1999).

GFS.GCCL.eng GFS.GCCL.test: The prediction phase

Description

This function is the internal function of the GFS.GCCL and FH.GBML method to compute the
predicted values.

Usage

GFS.GCCL.eng(object, newdata)

Arguments

object the frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

Value

A matrix of predicted values.

GFS.LT.RS GFS.LT.RS model building

Description

This is the internal function that implements genetic lateral tuning and rule selection of linguistic
fuzzy systems (GFS.LT.RS). It is used to solve regression tasks. Users do not need to call it directly,
but just use frbs.learn and predict.

Usage

GFS.LT.RS(data.train, popu.size = 10, range.data, num.labels,
persen_mutant, max.gen = 10, mode.tuning = "GLOBAL",
type.tnorm = "MIN", type.snorm = "MAX",
type.implication.func = "ZADEH", type.defuz = "WAM",
rule.selection = FALSE, range.data.ori)

50 GFS.LT.RS

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

popu.size the size of the population which is generated in each generation.
range.data a matrix representing interval of data.
num.labels a matrix representing the number of linguistic terms in each variables.
persen_mutant a real number between 0 and 1 determining the probability of mutation.
max.gen the maximal number of generations of the genetic algorithm.
mode.tuning a type of tuning which are "LOCAL" or "GLOBAL".
type.tnorm a type of t-norm. See inference.
type.snorm a type of s-norm. See inference.
type.implication.func

a type of implication function. See WM.
type.defuz a type of defuzzification methods. See defuzzifier.
rule.selection a boolean value representing whether performs rule selection or not.
range.data.ori a matrix containing the ranges of the original data.

Details

This method was proposed by R. Alcala et al. GFS.LT.RS implements a evolutionary algorithm for
postprocessing in constructing FRBS model. It uses a new rule representation model based on the
linguistic 2-tupples representation that allows the lateral displacement of the labels. This function
allows two different tuning which are global and local tuning.

Regarding with evolutionary algorithms, the following are main components:

• coding scheme and initial gene pool;
• chromosome evalution;
• crossover operator;
• restarting approach;
• evolutionary model;

In first time, population is constructed by Wang & Mendel’s technique. Mean square error (MSE)
is used to calculate chromosome evaluation. This method performs BLX-a in crossover process.
Additionally, rule selection method is performed in order to minimize the number of rules.

References

R. Alcala, J. Alcala-Fdez, and F. Herrera, "A proposal for the genetic lateral tuning of linguistic
fuzzy systems and its interaction with rule selection", IEEE Trans. on Fuzzy Systems, Vol. 15, No.
4, pp. 616 - 635 (2007).

See Also

GFS.LT.RS.test, frbs.learn, and predict

GFS.LT.RS.test 51

GFS.LT.RS.test GFS.LT.RS: The prediction phase

Description

This function is the internal function of the GFS.LT.RS method to compute the predicted values.

Usage

GFS.LT.RS.test(object, newdata)

Arguments

object the frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

Value

A matrix of predicted values.

GFS.Thrift GFS.Thrift model building

Description

This is the internal function that implements the Thrift’s technique based on a genetic algorithm. It
is used to tackle regression tasks. Users do not need to call it directly, but just use frbs.learn and
predict.

Usage

GFS.Thrift(data.train, popu.size = 10, num.labels, persen_cross = 0.6,
persen_mutant = 0.3, max.gen = 10, range.data.ori,
type.defuz = "WAM", type.tnorm = "MIN", type.snorm = "MAX",
type.mf = "TRIANGLE", type.implication.func = "ZADEH")

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

popu.size the size of the population which is generated in each generation.

num.labels a matrix describing the number of linguistic terms.

persen_cross a real number between 0 and 1 representing the probability of crossover.

52 GFS.Thrift.test

persen_mutant a real number between 0 and 1 representing the probability of mutation.

max.gen the maximal number of generations for the genetic algorithm.

range.data.ori a matrix containing the ranges of the original data.

type.defuz the type of the defuzzification method. For more detail, see defuzzifier. The
default value is WAM.

type.tnorm the type of t-norm. For more detail, please have a look at inference.

type.snorm the type of s-norm. For more detail, please have a look at inference.

type.mf the type of shape of membership function. See fuzzifier.
type.implication.func

the type of implication function. See WM.

Details

This method was developed by Thrift using Mamdani’s model as fuzzy IF-THEN rules. In this
method, we consider a table as a genotype with alleles that are fuzzy set indicators over the output
domain. The phenotype is produced by the behavior produced by the fuzzification, max-* compo-
sition, and defuzzification operations. A chromosome (genotype) is formed from the decision table
by going rowwise and producing a string of numbers from the code set. Standard crossover and
mutation operators can act on these string.

References

P. Thrift, "Fuzzy logic synthesis with genetic algorithms", In Proceedings of the Fourth International
Conference on Genetic Algorithms (ICGA91), San Diego (United States of America), pp. 509 - 513
(1991).

See Also

GFS.Thrift.test, frbs.learn, and predict

GFS.Thrift.test GFS.Thrift: The prediction phase

Description

This function is the internal function of the GFS.Thrift method to compute the predicted values.

Usage

GFS.Thrift.test(object, newdata)

Arguments

object the frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

HGD.update 53

Value

A matrix of predicted values.

HGD.update FS.HGD updating function

Description

The role of this function is to update parameters within the simplified TSK fuzzy rule generation
method using heuristics and the gradient descent method (FS.HGD). This function is called by the
main function of the FS.HGD method, see FS.HGD.

Usage

HGD.update(data.train, miu.rule, func.tsk, varinp.mf, step.size = 0.01,
def)

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable.

miu.rule a matrix with the degrees of rules which is the result of the inference.

func.tsk a matrix of parameters of the function on the consequent part using the Takagi
Sugeno Kang model. See rulebase.

varinp.mf a matrix of parameters of membership functions of the input variables.

step.size a real number between 0 and 1 representing the step size of the gradient descent.

def a matrix which is obtained by the defuzzifier.

See Also

FS.HGD

HyFIS HyFIS model building

Description

This is the internal function that implements the hybrid neural fuzzy inference system (HyFIS). It
is used to solve regression tasks. Users do not need to call it directly, but just use frbs.learn and
predict

54 HyFIS

Usage

HyFIS(data.train, num.labels, max.iter = 10, step.size = 0.01,
type.tnorm = "MIN", type.snorm = "MAX", type.defuz = "COG",
type.implication.func = "ZADEH")

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

num.labels a matrix (1 × n), whose elements represent the number of labels (linguistic
terms); n is the number of variables.

max.iter the maximal number of iterations.

step.size step size of the gradient descent method.

type.tnorm the type of t-norm. For more detail, please have a look at inference.

type.snorm the type of s-norm. For more detail, please have a look at inference.

type.defuz the type of aggregation function. For more detail, please have a look at defuzzifier

type.implication.func

a value representing type of implication function. For more detail, please have a
look at WM

Details

This method was proposed by J. Kim and N. Kasabov. There are two phases in this method for
learning, namely the knowledge acquisition module and the structure and parameter learning. The
knowledge acquition module uses the techniques of Wang and Mendel. The learning of structure
and parameters is a supervised learning method using gradient descent-based learning algorithms.
This function generates a model which consists of a rule database and parameters of the membership
functions. The rules of HyFIS use the Mamdani model on the antecedent and consequent parts.
Futhermore, HyFIS uses a Gaussian membership function. So, there are two kinds of parameters
that are optimized, mean and variance of the Gaussian function.

References

J. Kim and N. Kasabov, "HyFIS: Adaptive neuro-fuzzy inference systems and their application to
nonlinear dynamical systems", Neural Networks, vol. 12, no. 9, pp. 1301 - 1319 (1999).

See Also

HyFIS.update, frbs.learn, and predict.

HyFIS.update 55

HyFIS.update HyFIS updating function

Description

This function is called by HyFIS to update the parameters within the HyFIS method.

Usage

HyFIS.update(data.train, def, rule, names.varoutput, var.mf, miu.rule,
num.labels, MF, step.size = 0.001, degree.rule)

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable.

def matrix of defuzzification results. See defuzzifier.

rule fuzzy IF-THEN rules. See rulebase.

names.varoutput

a list of names of the output variable.

var.mf a matrix of parameters of the membership functions. Please see fuzzifier.

miu.rule a matrix of degree of rules which is a result of the inference.

num.labels a matrix (1 × n) whose elements represent the number of labels (or linguistic
terms), where n is the number of variables.

MF a matrix of parameters of the membership functions which is a result of the
fuzzifier.

step.size a real number, the step size of the gradient descent.

degree.rule a matrix of degrees of rules. See frbs-object.

See Also

HyFIS

56 inference

inference The process of fuzzy reasoning

Description

Inference refers to the process of fuzzy reasoning.

Usage

inference(MF, rule, names.varinput, type.tnorm, type.snorm)

Arguments

MF a matrix of the degrees of membership functions which is a result of the fuzzifier.
rule a matrix or list of fuzzy IF-THEN rules. See rulebase.
names.varinput a list of names of the input variables.
type.tnorm a value which represents the type of t-norm to be used:

• 1 or MIN means standard t-norm: min(x1, x2).
• 2 or HAMACHER means Hamacher product: (x1 ∗ x2)/(x1 + x2− x1 ∗ x2).
• 3 or YAGER means Yager class: 1−min(1, ((1− x1) + (1− x2))).
• 4 or PRODUCT means product: (x1 ∗ x2).
• 5 or BOUNDED means bounded product: max(0, x1 + x2− 1).

type.snorm a value which represents the type of s-norm to be used:
• 1 or MAX means standard s-norm: max(x1, x2).
• 2 or HAMACHER means Hamacher sum: (x1 + x2− 2x1 ∗ x2)/1− x1 ∗ x2.
• 3 or YAGER means Yager class: min(1, (x1 + x2)).
• 4 or SUM means sum: (x1 + x2− x1 ∗ x2).
• 5 or BOUNDED means bounded sum: min(1, x1 + x2).

Details

In this function, fuzzy reasoning is conducted based on Mamdani and Takagi Sugeno Kang model.
Furthermore, there are some formula for conjunction and disjunction operators.

The Mamdani model: A fuzzy system with, e.g., two inputs x1 and x2 (antecedents) and a single
output y (consequent) is described by the following fuzzy IF-THEN rule:

IF x1 is A1 and x2 is A2 THEN y is B

where A1 and A2 are the fuzzy sets representing the antecent pairs andB is the fuzzy set represent-
ing the consequent.

The Takagi Sugeno Kang model: Suppose we have two inputs x1 and x2 and output y, then the
fuzzy IF-THEN rule is as follows:

IF x1 is A1 and x2 is A2 THEN y is y = f(x1, x2)

where y = f(x1, x2) is a crisp function in the consequent part which is usually a polynomial
function, and A1 and A2 are the fuzzy sets representing the antecent pairs.

Futhermore, this function has the following capabilities:

norm.data 57

• It supports unary operators (not) and binary operators (AND and OR).

• It provides linguistic hedge (extremely, very, somewhat, and slightly).

• there are several methods for the t-norm and s-norm.

Value

a matrix of the degrees of the rules.

See Also

defuzzifier, rulebase, and fuzzifier.

norm.data The data normalization

Description

This function is to transform from real-valued data into normalized data.

Usage

norm.data(dt.ori, range.data, min.scale = 0, max.scale = 1)

Arguments

dt.ori a matrix (n×m) of the original data.

range.data a matrix (2 × n) containing the range of the data, where n is the number of
variables, and first and second rows are the minimum and maximum value, re-
spectively.

min.scale the minimum value within normalization.

max.scale the maximum value within normalization.

Value

the normalized data

See Also

denorm.data

58 plotMF

plotMF The plotting function

Description

This function can be used to plot the shapes of the membership functions.

Usage

plotMF(object)

Arguments

object an frbs-object or a list of parameters to plot membership functions when we
build the frbs model without learning. For plotting using the list, there are sev-
eral parameters that must be inserted in params as follows.

• var.mf: a matrix of membership function of input and output variables.
Please see fuzzifier.

• range.data.ori: a matrix (2× n) containing the range of the data, where
n is the number of variables, and first and second rows are the minimum
and maximum values, respectively.

• num.labels: the number of linguistic terms of the input and output vari-
ables.
For example: num.labels <- matrix(c(3, 3, 3), nrow = 1)
It means we have 3 linguistic values/labels for two input variables and one
output variable.

• names.variables: a list of names of variables.
For example: names.variables <- c("input1", "input2", "output1")

Examples

The following examples contain two different cases which are
using an frbs-object and the manual way.
##
1. Plotting using frbs object.
data(iris)
irisShuffled <- iris[sample(nrow(iris)),]
irisShuffled[,5] <- unclass(irisShuffled[,5])
tra.iris <- irisShuffled[1:105,]
tst.iris <- irisShuffled[106:nrow(irisShuffled),1:4]
real.iris <- matrix(irisShuffled[106:nrow(irisShuffled),5], ncol = 1)

Please take into account that the interval needed is the range of input data only.
range.data.input <- matrix(c(4.3, 7.9, 2.0, 4.4, 1.0, 6.9, 0.1, 2.5), nrow=2)

generate the model
method.type <- "FRBCS.W"
control <- list(num.labels = 7, type.mf = 1)

predict.frbs 59

Not run: object <- frbs.learn(tra.iris, range.data.input, method.type, control)

plot the frbs object
Not run: plotMF(object)

2. Plotting using params.
Define shape and parameters of membership functions of input variables.
Please see the fuzzifier function of how to contruct the matrix.
varinp.mf <- matrix(c(2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA,

2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA,
2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA,
2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA),
nrow = 5, byrow = FALSE)

Define the shapes and parameters of the membership functions of the output variables.
varout.mf <- matrix(c(2, 0, 20, 40, NA, 4, 20, 40, 60, 80, 3, 60, 80, 100, NA),

nrow = 5, byrow = FALSE)
var.mf <- cbind(varinp.mf, varout.mf)
range.data <- matrix(c(0,100, 0, 100, 0, 100, 0, 100, 0, 100), nrow=2)
num.labels <- matrix(c(3,3,3,3,3), nrow = 1)
names.variables <- c("input1", "input2", "input3", "input4", "output1")

plot the membership function.
Not run: plotMF(object = list(var.mf = var.mf, range.data.ori = range.data,

num.labels = num.labels, names.variables = names.variables))
End(Not run)

predict.frbs The frbs prediction stage

Description

This is the main function to obtain a final result as predicted values for all methods in this package.
In order to get predicted values, this function is run using an frbs-object, which is typically
generated using frbs.learn.

Usage

S3 method for class 'frbs'
predict(object, newdata, ...)

Arguments

object an frbs-object.

newdata a data frame or matrix (m×n) of data for the prediction process, wherem is the
number of instances and n is the number of input variables. It should be noted
that the testing data must be expressed in numbers (numerical data).

... the other parameters (not used)

60 predict.frbs

Value

The predicted values.

See Also

frbs.learn and frbs.gen for learning and model generation, and the internal main functions of
each method for the theory: WM, SBC, HyFIS, ANFIS, FIR.DM, DENFIS, FS.HGD, FRBCS.W, GFS.FR.MOGUL,
GFS.Thrift, GFS.GCCL, FRBCS.CHI, FH.GBML, GFS.LT.RS, and SLAVE.

Examples

##################################
I. Regression Problem
###################################
In this example, we just show how to predict using Wang and Mendel's technique but
users can do it in the same way for other methods.
data.train <- matrix(c(5.2, -8.1, 4.8, 8.8, -16.1, 4.1, 10.6, -7.8, 5.5, 10.4, -29.0,

5.0, 1.8, -19.2, 3.4, 12.7, -18.9, 3.4, 15.6, -10.6, 4.9, 1.9,
-25.0, 3.7, 2.2, -3.1, 3.9, 4.8, -7.8, 4.5, 7.9, -13.9, 4.8,
5.2, -4.5, 4.9, 0.9, -11.6, 3.0, 11.8, -2.1, 4.6, 7.9, -2.0,
4.8, 11.5, -9.0, 5.5, 10.6, -11.2, 4.5, 11.1, -6.1, 4.7, 12.8,
-1.0, 6.6, 11.3, -3.6, 5.1, 1.0, -8.2, 3.9, 14.5, -0.5, 5.7,
11.9, -2.0, 5.1, 8.1, -1.6, 5.2, 15.5, -0.7, 4.9, 12.4, -0.8,
5.2, 11.1, -16.8, 5.1, 5.1, -5.1, 4.6, 4.8, -9.5, 3.9, 13.2,
-0.7, 6.0, 9.9, -3.3, 4.9, 12.5, -13.6, 4.1, 8.9, -10.0,
4.9, 10.8, -13.5, 5.1), ncol = 3, byrow = TRUE)

data.fit <- matrix(c(10.5, -0.9, 5.2, 5.8, -2.8, 5.6, 8.5, -0.2, 5.3, 13.8, -11.9,
3.7, 9.8, -1.2, 4.8, 11.0, -14.3, 4.4, 4.2, -17.0, 5.1, 6.9,
-3.3, 5.1, 13.2, -1.9, 4.6), ncol = 3, byrow = TRUE)

newdata <- matrix(c(10.5, -0.9, 5.8, -2.8, 8.5, -0.2, 13.8, -11.9, 9.8, -1.2, 11.0,
-14.3, 4.2, -17.0, 6.9, -3.3, 13.2, -1.9), ncol = 2, byrow = TRUE)

range.data<-matrix(c(0.9, 15.6, -29, -0.2, 3, 6.6), ncol=3, byrow = FALSE)
###
I.1 Example: Implementation of Wang & Mendel
###
method.type <- "WM"

collect control parameters into a list
num.labels = 3 means we define 3 as the number of linguistic terms
control.WM <- list(num.labels = 3, type.mf = "GAUSSIAN", type.tnorm = "MIN",

type.snorm = "MAX", type.defuz = "WAM",
type.implication.func = "ZADEH", name = "Sim-0")

generate the model and save it as object.WM
object.WM <- frbs.learn(data.train, range.data, method.type, control.WM)

the prediction process
The following code can be used for all methods
res <- predict(object.WM, newdata)

read.frbsPMML 61

read.frbsPMML The frbsPMML reader

Description

It is used to read the frbsPMML format into an frbs model in R. Detailed information about frbsP-
MML can be seen in frbsPMML.

Usage

read.frbsPMML(fileName)

Arguments

fileName a file name with extension .frbsPMML.

Value

an object representing the frbs model.

an frbs object

See Also

write.frbsPMML and frbsPMML.

Examples

This example shows how to construct and read frbsPMML file of frbs model
Even though we are using MAMDANI model, other models have the same way
##
1. Produce frbs model, for example: we perform Wang & Mendel's technique (WM)
##
Input data
data(frbsData)
data.train <- frbsData$GasFurnance.dt[1 : 204,]
data.fit <- data.train[, 1 : 2]
data.tst <- frbsData$GasFurnance.dt[205 : 292, 1 : 2]
real.val <- matrix(frbsData$GasFurnance.dt[205 : 292, 3], ncol = 1)
range.data<-matrix(c(-2.716, 2.834, 45.6, 60.5, 45.6, 60.5), nrow = 2)

Set the method and its parameters
method.type <- "WM"
control <- list(num.labels = 15, type.mf = "GAUSSIAN", type.defuz = "WAM",

type.tnorm = "MIN", type.implication.func = "ZADEH",
name="sim-0")

Generate fuzzy model

62 rulebase

Not run: object <- frbs.learn(data.train, range.data, method.type, control)

2. Write frbsPMML file
In this step, we provide two ways as follows.
a. by calling frbsPMML() function directly.
b. by calling write.frbsPMML() function.

2a. by calling frbsPMML(), the format will be displayed in R console
Not run: frbsPMML(object)

2b. by calling write.frbsPMML(), the result will be saved as a file
in the working directory.
Not run: write.frbsPMML(object, file = "MAMDANI.GasFur")

3. Read frbsPMML file
Not run: object <- read.frbsPMML("MAMDANI.GasFur.frbsPMML")

4. Perform predicting step
Not run: res.test <- predict(object, data.tst)

rulebase The rule checking function

Description

This function checks the consistency of a rule definition (given by the user). The rulebase consists
of several fuzzy IF-THEN rules. The rules could be in a list or matrix type. Generally, there are
three types of rule structures which are rules based on Mamdani, Takagi Sugeno Kang and fuzzy
rule-based classification systems (FRBCS).

For rules of the Mamdani model, there are 2 parts in each rule, the antecedent and the consequent
part, which are separated by "->".

Usage

rulebase(type.model, rule, func.tsk = NULL)

Arguments

type.model a value determining the type of model to use. Here, MAMDANI and TSK mean
Mamdani and Takagi Sugeno Kang model, respectively.

rule a matrix or list of rules.

func.tsk a matrix representing the consequent parts of rules in Takagi Sugeno Kang for-
mulation.

rulebase 63

Details

For example: r1 <- c("a1","and","b1","->", "c1")

It means that "IF input.variable1 is a1 and input.variable2 is b1 THEN output.variable is c1"

Here, ("a1", "and", "b1") is the antecedent, with "a1" and "b1" being linguistic terms, and ("c1") is
the consequent part.

A fuzzy IF-THEN rule base with several rules is defined in the following way:

r1 <- c("not a1","and","b1", "->", "c1")

r2 <- c("a2","or","b2", "->", "c2")

r3 <- c("a3","or","b2", "->", "c3")

rule <- list(r1,r2,r3)

For rules of the Takagi Sugeno Kang model, the rules are at first defined without the consequent
part, e.g.:

r1 <- c("a1",1,"b1","->")

r2 <- c("a2",2,"b2", "->")

r3 <- c("a3","2","b2", "->")

rule <- list(r1,r2,r3)

The consequences are defined then as a matrix fun_tsk, which contains the linear equations of the
consequences of the rules. The dimension of this matrix is [<number_of_rules>, <number_of_variables>
+ 1]. The matrix has one extra column for the constants. If there is no constant, a zero is put.

So, for example, if we have 3 rules and 2 linguistic variables (A, B), the matrix fun_tsk has
dim(3,3), as in:

func.tsk <- matrix(c(1, 1, 5, 2, 1, 3, 1, 2, 2), nrow=3, ncol=3, byrow = TRUE)

Furthermore, we can represent linguistic hedges within the rules. The kinds of hedges used are

• "extremely" reduces the truth value. For example, "extremely a1" means membership
function a1 = µ(a1)3.

• "very" reduces the truth value. For example, "very a1" means membership function a1 =
µ(a1)2.

• "somewhat" increases the truth value. For example, "somewhat a1" means membership func-
tion a1 = µ(a1)0.5.

• "slightly" increases the truth value. For example, "slightly a1" means membership func-
tion a1 = µ(a1)0.33

An example of fuzzy IF-THEN rules using linguistic hedge is:

r1 <- c("very a1","and","b1","->","c1")

r2 <- c("a2",2,"b2", "->", "c2")

r3 <- c("a3","2","slightly b2", "->", "c3")

rule <- list(r1,r2,r3)

Furthermore, the following is an example in order to give names to the linguistic terms in the input
and output variables.

64 SBC

varinput.1 <- c("a1", "a2", "a3")

varinput.2 <- c("b1", "b2")

names.varinput <- c(varinput.1, varinput.2)

names.varoutput <- c("c1", "c2", "c3")

In case of FRBCS model, the structure of rules are quite similar with Takagi Sugeno Kang model.
But, instead of using linear equation in consequent part, consequent parts in FRBCS are represented
by class. For example, Take into account that consequent parts expresses classes.

rule<-matrix(c("v.1_a.2","and","v.2_a.2","and","v.3_a.3","and","v.4_a.2","->","3",

"v.1_a.2","and","v.2_a.3","and","v.3_a.1","and","v.4_a.3","->","1",

"v.1_a.2","and","v.2_a.2","and","v.3_a.2","and","v.4_a.2","->","2"),

nrow=3, byrow=TRUE)

Where, "1", "2", "3" represent class 1, 2, and 3.

Noted that all rules included in rule base must have the same length as many as the number of
variables. However, we can ignore some input variables by defining the "dont_care" value. For
example, the rule ("not a1","and","dont_care", "->", "c1") refers to the rule ("not a1" "->", "c1").
Furthermore, if we are using the learning methods, the fuzzy IF-THEN rules will be generated
automatically as the outputs of frbs.learn.

Value

fuzzy IF-THEN rule base

See Also

defuzzifier, inference, and fuzzifier

SBC The subtractive clustering and fuzzy c-means (SBC) model building

Description

This is the internal function that implements a combination of the subtractive clustering method and
fuzzy c-means. It is used to solve regression tasks. Users do not need to call it directly, but just use
frbs.learn and predict

Usage

SBC(data.train, range.data.ori, r.a = 0.5, eps.high = 0.5,
eps.low = 0.15)

SBC.test 65

Arguments

data.train a matrix (m × n) of data for the training process, where m is the number of
instances and n is the number of variables; the last column is the output variable.

range.data.ori a matrix (2 × n) containing the range of the data, where n is the number of
variables, and first and second rows are the minimum and maximum value, re-
spectively.

r.a the radius defining a neighborhood.

eps.high an upper threshold value.

eps.low a lower threshold value.

Details

This method was proposed by S. Chiu. For generating the rules in the learning phase, the subtractive
clustering method is used to obtain the cluster centers. Subtractive clustering (SBC) is an extension
of Yager and Filev’s mountain method. SBC considers each data point as a potential cluster center
by determining the potential of a data point as a function of its distances to all the other data points.
A data point has a high potential value if that data point has many nearby neighbors. The highest
potential is chosen as the cluster center and then the potential of each data point will be updated. The
process of determining new clusters and updating potentials repeats until the remaining potential of
all data points falls below some fraction of the potential of the first cluster center. After getting all
the cluster centers from subtractive clustering, the cluster centers are optimized by fuzzy c-means.

References

R. Yager and D. Filev, "Generation of fuzzy rules by mountain clustering," J. of Intelligent and
Fuzzy Systems, vol. 2, no. 3, pp. 209 - 219 (1994).

S. Chiu, "Method and software for extracting fuzzy classification rules by subtractive clustering",
Fuzzy Information Processing Society, NAFIPS, pp. 461 - 465 (1996).

See Also

SBC.test, frbs.learn, and predict

SBC.test SBC prediction phase

Description

This function is the internal function of the SBC method to compute the predicted values.

Usage

SBC.test(object, newdata)

66 SLAVE

Arguments

object the frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

See Also

SBC

SLAVE SLAVE model building

Description

This is the internal function that implements the structural learning algorithm on vague environment
(SLAVE). It is used to handle classification tasks. Users do not need to call it directly, but just use
frbs.learn and predict.

Usage

SLAVE(data.train, persen_cross = 0.6, persen_mutant = 0.3,
max.iter = 10, max.gen = 10, num.labels, range.data.input,
k.lower = 0.25, k.upper = 0.75, epsilon = 0.1)

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; The last column is the
output variable. Note the data must be normalized between 0 and 1.

persen_cross a real number between 0 and 1 representing the probability of crossover.

persen_mutant a real number between 0 and 1 representing the probability of mutation.

max.iter the maximal number of iterations.

max.gen the maximal number of generations for the genetic algorithm.

num.labels a number of the linguistic terms.

range.data.input

a matrix containing the ranges of the normalized input data.

k.lower a lower bound of the noise threshold.

k.upper an upper bound of the noise threshold.

epsilon a value between 0 and 1 representing the covering factor.

SLAVE.test 67

Details

This method is adopted from A. Gonzalez and R. Perez’s paper which is applied for classification
problems. SLAVE is based on the iterative rule learning approach which means that we get only one
fuzzy rule in each execution of the genetic algorithm. In order to eliminate the irrelevant variables
in a rule, SLAVE has a structure composed of two parts: the first part is to represent the relevance
of variables and the second one is to define values of the parameters. The following steps are
conducted in order to obtain fuzzy rules:

• Step 1: Use the genetic algorithm process to obtain ONE RULE for the system.

• Step 2: Collect the rule into the final set of rules.

• Step 3: Check and penalize this rule.

• Step 4: If the stopping criteria is satisfied, the system returns the set of rules as solution.
Otherwise, back to Step 1.

This method uses binary codes as representation of the population and applies the basic genetic
operators, i.e., selection, crossover, and mutation on it. And, the best rule is obtained by calculating
the degree of consistency and completeness.

References

A. Gonzalez and R. Perez, "Selection of relevant features in a fuzzy genetic learning algorithm",
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 31, no. 3, pp. 417
- 425 (2001).

SLAVE.test SLAVE.test: The prediction phase

Description

This function is the internal function of the SLAVE method to compute the predicted values.

Usage

SLAVE.test(object, newdata)

Arguments

object the frbs-object.

newdata a matrix (m × n) of data for the prediction process, where m is the number of
instances and n is the number of input variables.

Value

A matrix of predicted values.

68 summary.frbs

summary.frbs The summary function for frbs objects

Description

This function enables the output of a summary of the frbs-object.

Usage

S3 method for class 'frbs'
summary(object, ...)

Arguments

object the frbs-object

... the other parameters (not used)

Details

This function displays several components of the object. The components of one particular method
can be different from components of other methods. The following is a description of all compo-
nents which might be printed.

• The name of the model: A name given by the user representing the name of the simulation or
data or model.

• Model was trained using: It shows which method we have been used.

• The names of attributes: a list of names of training data.

• The interval of training data: It is a matrix representing the original interval of data where
the first and second rows are minimum and maximum of data, respectively. The number of
columns represents the number of variables.

• Type of FRBS model: a description expresses one of the following FRBS model available
such as "MAMDANI", "TSK", "FRBCS", "CLUSTERING", "APPROXIMATE", and "2TUPPLE".

• Type of membership function: a description expresses one of the following shapes of mem-
bership functions: "GAUSSIAN", code"TRIANGLE", "TRAPEZOID", "SIGMOID", and "BELL".

• Type of t-norm method: a description expresses one of the following type of t-norm: "MIN",
"PRODUCT", "HAMACHER", "YAGER", and "BOUNDED".

• Type of s-norm method: a description expresses one of the following type of s-norm: "MAX",
"SUM", "HAMACHER", "YAGER", and "BOUNDED".

• Type of defuzzification technique: a description expresses one of the following types: "WAM",
"FIRST_MAX", "LAST_MAX", "MEAN_MAX", and "COG".

• Type of implication function: a description expresses one of the following types: "DIENES_RESHER",
"LUKASIEWICZ", "ZADEH", "GOGUEN", "GODEL", "SHARP", "MIZUMOTO", "DUBOIS_PRADE",
and "MIN".

summary.frbs 69

• The names of linguistic terms of the input variables: These names are generated automatically
by frbs expressing all linguistic terms considered. Generally, these names are built by two
parts which are the name of variables expressed by "v" and the name of linguistic terms of
each variables represented by "a". For example, "v.1_a.1" means the linguistic value "a.1"
of the first variable (v.1). However, we provide different format if we set the number of
linguistic terms (num.labels) to 3, 5, 7. For example, for the number of label 3, it will be
"small", "medium", and "large".

• The names of linguistic terms of the output variable: For the Mamdani model, since the frbs
package only considers single output, the names of the linguistic terms for the output variable
are simple and clear and start with "c". However, for the Takagi Sugeno Kang model and
fuzzy rule-based classification systems, this component is always NULL.

• The parameter values of membership functions of the input variables (normalized): It is rep-
resented by a matrix (5 × n) where n depends on the number of linguistic terms on the input
variables and the first row of the matrix describes a type of membership function, and the rest
of rows are their parameter values. For example, label "v.1_a.2" has value 4.0, 0.23, 0.43,
0.53, 0.73 on its column. It means that the label a.2 of variable v.1 has a parameter as follows.
4.0 on the first row shows TRAPEZOID shape in the middle position, while 0.23, 0.43, 0.53,
and 0.73 are corner points of a TRAPEZOID. Furthermore, the following is the complete list of
shapes of membership functions:

– TRIANGLE: 1 on the first row and rows 2, 3, and 4 represent corner points.
– TRAPEZOID: 2, 3, or 4 on the first row means they are TRAPEZOID in left, right and middle

side, respectively, and rows 2, 3, 4, and 5 represent corner points. But for TRAPEZOID at
left or right side the fifth row is NA.

– GAUSSIAN: 5 on the first row means it uses GAUSSIAN and second and third row represent
mean and variance.

– SIGMOID: 6 on the first row and two parameters (gamma and c) on second and third rows.
– BELL: 7 on the first row and three parameters (a, b, c) on second, third, and fourth rows.

• The fuzzy IF-THEN rules: In this package, there are several models for representing fuzzy
IF-THEN rules based on the method used.

– the Mamdani model: they are represented as a knowledge base containing two parts:
antecedent and consequent parts which are separated by a sign "THEN", as for example
in the following rule:
IF var.1 is v.1_a.1 and var.2 is v.2_a.2 THEN var.3 is c.2

– the Takagi Sugeno Kang model: In this model, this component only represents the an-
tecedent of rules while the consequent part will be represented by linear equations.

– fuzzy rule-based classification systems (FRBCS): This model is quite similar to the Tak-
agi Sugeno Kang model, but the consequent part expresses pre-defined classes instead of
a simplify of linear equations.

– approximate approach: Especially for GFS.FR.MOGUL, a matrix of parameters of member-
ship functions is used to represent the fuzzy IF-THEN rules as well. The representation of
rules and membership functions is a matrix (n× (p×m)) where n is the number of rules
and m is the number of variables while p is the number of corner points of the member-
ship function, if we are using TRIANGLE or TRAPEZOID then p = 3 or 4, respectively. For
example, let us consider the triangular membership function and a number of variables of
3. The representation of rules and membership functions is as follows:
<<a11 a12 a13>> <<b11 b12 b13>> <<c11 c12 c13>>.

70 WM

• The linear equations on consequent parts of fuzzy IF-THEN rules: It is used in the Takagi
Sugeno Kang model.

• The weight of the rules or the certainty factor: For the FRBCS.W method, this shows the weight
related to the rules representing the ratio of dominance among the rules.

• The cluster centers: This component is used in clustering methods representing cluster centers.

WM WM model building

Description

This is the internal function that implements the model proposed by L. X. Wang and J. M. Mendel.
It is used to solve regression task. Users do not need to call it directly, but just use frbs.learn and
predict

Usage

WM(data.train, num.labels, type.mf = "GAUSSIAN",
type.tnorm = "PRODUCT", type.implication.func = "ZADEH",
classification = FALSE, range.data = NULL)

Arguments

data.train a matrix (m × n) of normalized data for the training process, where m is the
number of instances and n is the number of variables; the last column is the
output variable. Note the data must be normalized between 0 and 1.

num.labels a matrix (1 × n), whose elements represent the number of labels (linguistic
terms); n is the number of variables.

type.mf the type of the membership function. See frbs.learn.

type.tnorm a value which represents the type of t-norm. See inference.
type.implication.func

a value representing type of implication function. Let us consider a rule, a→ b,

• DIENES_RESHER means (b > 1− a?b : 1− a).
• LUKASIEWICZ means (b < a?1− a+ b : 1).
• ZADEH means (a < 0.5||1− a > b?1− a : (a < b?a : b)).
• GOGUEN means (a < b?1 : b/a).
• GODEL means (a <= b?1 : b).
• SHARP means (a <= b?1 : 0).
• MIZUMOTO means (1− a+ a ∗ b).
• DUBOIS_PRADE means (b == 0?1− a : (a == 1?b : 1)).
• MIN means (a < b?a : b).

classification a boolean representing whether it is a classification problem or not.

range.data a matrix representing interval of data.

write.frbsPMML 71

Details

The fuzzy rule-based system for learning from L. X. Wang and J. M. Mendel’s paper is implemented
in this function. For the learning process, there are four stages as follows:

• Step 1: Divide equally the input and output spaces of the given numerical data into fuzzy
regions as the database. In this case, fuzzy regions refers to intervals for each linguistic term.
Therefore, the length of fuzzy regions represents the number of linguistic terms. For example,
the linguistic term "hot" has the fuzzy region [1, 3]. We can construct a triangular membership
function having the corner points a = 1, b = 2, and c = 3 where b is a middle point that its
degree of the membership function equals one.

• Step 2: Generate fuzzy IF-THEN rules covering the training data, using the database from
Step 1. First, we calculate degrees of the membership function for all values in the training
data. For each instance in the training data, we determine a linguistic term having a maximum
degree in each variable. Then, we repeat the process for each instance in the training data to
construct fuzzy rules covering the training data.

• Step 3: Determine a degree for each rule. Degrees of each rule are determined by aggregating
the degree of membership functions in the antecedent and consequent parts. In this case, we
are using the product aggregation operators.

• Step 4: Obtain a final rule base after deleting redundant rules. Considering degrees of rules,
we can delete the redundant rules having lower degrees.

The outcome is a Mamdani model. In the prediction phase, there are four steps: fuzzification,
checking the rules, inference, and defuzzification.

References

L.X. Wang and J.M. Mendel, "Generating fuzzy rule by learning from examples", IEEE Trans.
Syst., Man, and Cybern., vol. 22, no. 6, pp. 1414 - 1427 (1992).

See Also

frbs.learn, predict and frbs.eng.

write.frbsPMML The frbsPMML writer

Description

It is a function used to save an FRBS model to the .frbsPMML file. Detailed information about
frbsPMML can be seen in frbsPMML.

Usage

write.frbsPMML(object, fileName = NULL)

72 write.frbsPMML

Arguments

object a frbsPMML object which is an object produced by frbsPMML.

fileName a file name with extension .frbsPMML.

Value

a file containing an FRBS model in frbsPMML format

References

A. Guazzelli, M. Zeller, W.C. Lin, and G. Williams., "pmml: An open standard for sharing models",
The R Journal, Vol. 1, No. 1, pp. 60-65 (2009).

Data Mining Group, http://www.dmg.org/.

See Also

read.frbsPMML and frbsPMML.

Examples

This example shows how to construct frbsPMML file of frbs model
Even though we are using MAMDANI model, other models have the same way
##
1. Produce frbs model, for example: we perform Wang & Mendel's technique (WM)
##
Input data
data(frbsData)
data.train <- frbsData$GasFurnance.dt[1 : 204,]
data.fit <- data.train[, 1 : 2]
data.tst <- frbsData$GasFurnance.dt[205 : 292, 1 : 2]
real.val <- matrix(frbsData$GasFurnance.dt[205 : 292, 3], ncol = 1)
range.data<-matrix(c(-2.716, 2.834, 45.6, 60.5, 45.6, 60.5), nrow = 2)

Set the method and its parameters
method.type <- "WM"
control <- list(num.labels = 15, type.mf = "GAUSSIAN", type.defuz = "WAM",

type.tnorm = "MIN", type.implication.func = "ZADEH",
name = "sim-0")

Generate fuzzy model
Not run: object <- frbs.learn(data.train, range.data, method.type, control)

2. Write frbsPMML file
In this step, we provide two steps as follows:
a. by calling frbsPMML() function directly.
b. by calling write.frbsPMML() function.

2a. by calling frbsPMML(), the frbsPMML format will be displayed in R console
Not run: pmml.obj <- frbsPMML(object)

2b. by calling write.frbsPMML(), the result will be saved as a file

write.frbsPMML 73

in the working directory.
Not run: write.frbsPMML(pmml.obj, file = "MAMDANI.GasFur")

Index

∗ data
frbsData, 39

ANFIS, 4, 10, 11, 31, 34, 60
ANFIS.update, 11, 11

data.gen3d, 12
defuzzifier, 3, 13, 17, 23, 24, 32, 46, 50,

52–55, 57, 64
DENFIS, 4, 14, 15, 17, 31, 34, 60
DENFIS.eng, 15, 15, 17
denorm.data, 16, 57
DM.update, 16, 20

ECM, 14, 17

FH.GBML, 4, 18, 31, 34, 60
FIR.DM, 4, 16, 17, 19, 31, 34, 60
FRBCS.CHI, 4, 20, 31, 34, 60
FRBCS.eng, 21, 21, 22
FRBCS.W, 4, 21, 31, 34, 60
frbs (frbs-package), 3
frbs-object (frbsObjectFactory), 40
frbs-package, 3
frbs.eng, 22, 71
frbs.gen, 5, 6, 23, 60
frbs.learn, 4–6, 10, 11, 14, 15, 17–22, 30,

44–54, 59, 60, 64–66, 70, 71
frbsData, 6, 39
frbsObjectFactory, 40
frbsPMML, 5, 6, 41, 61, 71, 72
FS.HGD, 4, 31, 34, 44, 53, 60
fuzzifier, 3, 13, 14, 20, 23, 24, 32, 45, 52,

55–58, 64

GFS.FR.MOGUL, 4, 31, 34, 46, 60
GFS.FR.MOGUL.test, 47, 47
GFS.GCCL, 4, 31, 34, 48, 60
GFS.GCCL.eng, 49
GFS.LT.RS, 4, 31, 34, 49, 60
GFS.LT.RS.test, 50, 51

GFS.Thrift, 4, 31, 34, 51, 60
GFS.Thrift.test, 52, 52

HGD.update, 45, 53
HyFIS, 4, 30, 34, 53, 55, 60
HyFIS.update, 54, 55

inference, 3, 11–14, 17, 19, 20, 22–24, 32,
33, 44, 46, 50, 52–55, 56, 64, 70

norm.data, 16, 57

plotMF, 5, 58
predict, 5, 6, 10, 11, 14, 15, 17–22, 34,

44–54, 64–66, 70, 71
predict (predict.frbs), 59
predict.frbs, 59

read.frbsPMML, 5, 41, 61, 72
rulebase, 3, 5, 13, 14, 17, 23, 24, 46, 53,

55–57, 62

SBC, 4, 30, 34, 60, 64, 66
SBC.test, 65, 65
SLAVE, 4, 31, 34, 60, 66
SLAVE.test, 67
summary.frbs, 5, 68

WM, 4, 11, 19, 20, 22, 25, 30, 33, 34, 44, 50, 52,
54, 60, 70

write.frbsPMML, 5, 41, 61, 71

74

	frbs-package
	ANFIS
	ANFIS.update
	data.gen3d
	defuzzifier
	DENFIS
	DENFIS.eng
	denorm.data
	DM.update
	ECM
	FH.GBML
	FIR.DM
	FRBCS.CHI
	FRBCS.eng
	FRBCS.W
	frbs.eng
	frbs.gen
	frbs.learn
	frbsData
	frbsObjectFactory
	frbsPMML
	FS.HGD
	fuzzifier
	GFS.FR.MOGUL
	GFS.FR.MOGUL.test
	GFS.GCCL
	GFS.GCCL.eng
	GFS.LT.RS
	GFS.LT.RS.test
	GFS.Thrift
	GFS.Thrift.test
	HGD.update
	HyFIS
	HyFIS.update
	inference
	norm.data
	plotMF
	predict.frbs
	read.frbsPMML
	rulebase
	SBC
	SBC.test
	SLAVE
	SLAVE.test
	summary.frbs
	WM
	write.frbsPMML
	Index

