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Abstract

Quantile-based approaches to the spectral analysis of time series have recently at-
tracted a lot of attention. Several methods for estimation have been proposed in the
literature and their statistical properties were analyzed. Yet, so far, neither a system-
atic method for computation nor a comprehensive software implementation are available
to date. This paper contains two main contributions. First, an extensible framework
for quantile-based spectral analysis of time series is developed and documented using
object-oriented models. A comprehensive, open source reference implementation of this
framework is provided in the R package quantspec, which is available from the Compre-
hensive R Archive Network. The second contribution of the present paper is to provide
a detailed tutorial, with worked examples, for this R package. A reader who is already
familiar with quantile-based spectral analysis and whose primary interest is not the design
of the quantspec package, but how to use it, can read the tutorial and worked examples
(Sections 3 and 4) independently.

This introduction to the R package quantspec is a (slightly) modified version of Kley
(2016), published in the Journal of Statistical Software.

Keywords: time series, spectral analysis, periodogram, quantile regression, copulas, ranks, R,
quantspec, framework, object-oriented design.

1. A short introduction to quantile-based spectral analysis

1.1. Laplace and copula cumulants and their spectral representation

Quantification of serial dependence in a second-order stationary process (Xt)t∈Z is tradition-
ally based on its autocovariance and autocorrelation functions, which measure linear depen-
dencies among observations at different times. Periodicities of a time series are then most
commonly analyzed by decomposing the autocovariance function, into a sum of sines and
cosines. This approach is referred to as (ordinary) spectral analysis of time series and has
been known for decades. As a statistical method, it has been investigated many times and is
well understood. In the analysis of centered Gaussian time series this approach is particularly
attractive, because the autocovariance function completely characterizes the distribution of
the underlying process. If that process is not Gaussian, ordinary spectral analysis suffers
from typical weaknesses of L2-methods: It is lacking robustness against outliers and heavy
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tails, and is unable to capture important dynamic features such as changes in the conditional
shape (skewness, kurtosis), time-irreversibility, or dependence in the extremes. In addition,
only time series with an existing second moment can be analyzed at all. All of this was
previously realized by many researchers, and various extensions and modifications of the
L2-periodogram have been proposed to remedy those drawbacks.

Approaches to robustifying the traditional spectral methods against outliers and deviations
from the distributional assumptions were taken, among others, by Kleiner, Martin, and Thom-
son (1979); Klüppelberg and Mikosch (1994); Mikosch (1998); Katkovnik (1998); Hill and Mc-
Closkey (2013). To account for more general dynamic features alternative spectral concepts
and tools were recently proposed. A first step in that direction was taken by Hong (1999).
In order to obtain a complete description of the two-dimensional distributions at lag k, he
introduced a generalized spectrum where the covariances COV(Xt, Xt−k) are replaced by the
covariances COV(eix1Xt , eix2Xt−k) yielding a spectrum closely related to the joint characteris-
tic functions of the pairs (Xt, Xt−k). In the quantile-based approach to spectral analysis the
objects of interest are the Laplace cross-covariance kernel

γk(q1, q2) := COV



I¶Xt ≤ q1♢, I¶Xt−k ≤ q2♢


, q1, q2 ∈ R̄, k ∈ Z,

and the copula cross-covariance kernel

γU
k (τ1, τ2) :=



I¶F (Xt) ≤ τ1♢, I¶F (Xt−k) ≤ τ2♢


, τ1, τ2 ∈ [0, 1], k ∈ Z,

where I¶A♢ denotes the indicator function of the event ¶A♢, R̄ := R∪¶−∞, ∞♢ the extended
real line and F the marginal distribution function (i.e., the distribution function of any Xt

with strict stationarity being assumed). Obviously these measures exist without the necessity
to make assumptions about moments. Also, when the underlying process is not Gaussian,
and the quantile-based measures of serial dependence are considered to be functions with
arguments q1, q2, or τ1, τ2 respectively, they provide a much richer picture about the pairwise
dependence than would the autocovariances. As in the approach of Hong (1999), a com-
plete description of the joint distributions (or copulas) of the pairs (Xt, Xt−k) is available.
A particular advantage of the copula cross-covariance kernel is its invariance to monotone
transformations. This allows to disentangle the serial features from the marginal features.
For a full list of the properties and advantages of these dependence measures the interested
reader is referred to Hong (2000); Li (2008, 2012, 2013, 2014); Hagemann (2013); Lee and Rao
(2012); Kley (2014); Dette, Hallin, Kley, and Volgushev (2015) and Kley, Volgushev, Dette,
and Hallin (2016).

Under summability conditions on (γk) and (γU
k ) the representations of (γk) and (γU

k ) in the
“frequency domain” take the form of the Laplace spectral density kernel

fq1,q2
(ω) :=

1

2π

∞
∑

k=−∞

γk(q1, q2)e−ikω, q1, q2 ∈ R̄, ω ∈ R, (1)

and the copula spectral density kernel

fqτ1
,qτ2

(ω) :=
1

2π

∞
∑

k=−∞

γU
k (τ1, τ2)e−ikω, τ1, τ2 ∈ [0, 1], ω ∈ R, (2)
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where qτ := F −1(τ). By the relation

γk(q1, q2) =

∫ π

−π
eikωfq1,q2

(ω)dω,

and a similar representation for γU
k (τ1, τ2), the representations in the “frequency domain” are

seen to be equivalent to the “time domain” quantities.

Sometimes considering the cumulated Laplace or copula spectral density kernels, which can
be defined as

Fq1,q2
(ω) :=

∫ ω

0

fq1,q2
(λ)dλ, q1, q2 ∈ R̄, ω ∈ [0, 2π], (3)

and

Fqτ1
,qτ2

(ω) :=

∫ ω

0

fqτ1
,qτ2

(λ)dλ, τ1, τ2 ∈ [0, 1], ω ∈ [0, 2π], (4)

is more convenient.

The quantities such as γk and γU
k , and their spectral representations (1)–(4) naturally come

into the picture when the clipped processes (I¶Xt ≤ q♢)t∈Z and (I¶F (Xt) ≤ τ♢)t∈Z are
investigated. Such binary processes have been considered earlier in the literature by, e.g.,
Kedem (1980). Observe that the quantile-based spectral quantities can be interpreted in terms
of an orthogonal increment process of a spectral representation of the clipped process which
exists for every strictly stationary process (more precisely, it suffices if the joint distributions
of (Xt, Xt−k) depend only on k, but not on t); no assumptions about moments are necessary.

Recently, there has been a surge of interest in that type of concept, with the introduction,
under the names of Laplace-, quantile- and copula spectral density and spectral density ker-
nels, of various quantile-related spectral concepts, along with the corresponding sample-based
periodograms and smoothed periodograms (cf. Li 2008, 2012, 2013, 2014; Hagemann 2013;
Lee and Rao 2012; Kley 2014; Dette et al. 2015; Kley et al. 2016).

Despite the vast amount of theoretical work, a software solution was so far not publicly
available.

1.2. Estimators for the quantile-based spectral analysis of time series

In this section, various estimators (the so-called quantile periodograms) for the Laplace and
copula spectra defined in Section 1.1 are briefly considered. For the upcoming definitions
denote by X0, . . . , Xn−1 an observed time series of the process (Xt)t∈Z, by

F̂n(x) :=
1

n

n−1
∑

t=0

I¶Xt ≤ x♢

the empirical distribution function of X0, . . . , Xn−1, and by ℜz and ℑz the real and imaginary
part of z = ℜz + iℑz ∈ C, respectively. Further,

ρτ (x) := x(τ − I¶x ≤ 0♢) = (1 − τ)♣x♣I¶x ≤ 0♢ + τ ♣x♣I¶x > 0♢,

denotes the so-called check function (cf. Koenker 2005).
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Definition 1 (Quantile-regression based periodograms)
For ω ̸= 0 mod 2π and τ1, τ2 ∈ (0, 1) the Laplace periodogram L̂τ1,τ2

n (ω), and the rank-based
Laplace periodogram L̂τ1,τ2

n,R (ω) are defined as

L̂τ1,τ2

n (ω) := (2πn)−1b̂τ1

n (ω)b̂τ2

n (−ω), L̂τ1,τ2

n,R (ω) := (2πn)−1b̂τ1

n,R(ω)b̂τ2

n,R(−ω),

where, for ω ̸= 0 mod π, and τ ∈ (0, 1),

(âτ
n(ω), b̂τ

n(ω)) := argmina∈R,b∈C

n−1
∑

t=0

ρτ (nXt − a − 2 cos(ωt)ℜb + 2 sin(ωt)ℑb), (5)

(âτ
n,R(ω), b̂τ

n,R(ω)) := argmina∈R,b∈C

n−1
∑

t=0

ρτ (nF̂n(Xt) − a − 2 cos(ωt)ℜb + 2 sin(ωt)ℑb).

and for ωπ = 2π(j + 1/2), j ∈ Z, and τ ∈ (0, 1),

(âτ
n(ωπ), b̂τ

n(ωπ)) := argmina∈R,b∈R

n−1
∑

t=0

ρτ (nXt − a − cos(ωπt)b),

(âτ
n,R(ωπ), b̂τ

n,R(ωπ)) := argmina∈R,b∈R

n−1
∑

t=0

ρτ (nF̂n(Xt) − a − cos(ωπt)b).

Note that, for ω = 0 mod π, the estimates need to be adapted, because the regressor that
yields the imaginary part of the estimate vanishes. For ω ∈ 2πZ an adaptation is also possible
(cf. Kley 2014), but since it is not required for the definition of the smoothed estimates this
is omitted here, for the sake of brevity. Observe that the rank-based periodograms obtained
their name due to the fact that nF̂n(Xt) is the rank of Xt among X0, . . . , Xn−1

The Laplace periodograms can be traced back to Katkovnik (1998), who, in the field of signal
processing, suggested Lp estimators in a harmonic linear model. Li (2008) proved asymptotic
normality of the Laplace periodograms for τ1 = τ2 = 0.5 and later extended the approach
to arbitrary quantiles with 0 < τ1 = τ2 < 1 (Li 2012). Dette et al. (2015) introduced the
estimator with distinct quantile levels τ1 and τ2 (not necessarily equal), and also considered
the rank-based version.

Another estimator is based on the discrete Fourier transform of clipped processes and can be
defined as follows:

Definition 2 (Periodograms based on clipped time series)
For ω ∈ R and q1, q2 ∈ R, the clipped time series periodogram is defined as

Iq1,q2

n (ω) := (2πn)−1dq1

n (ω)dq2

n (−ω), dq
n(ω) :=

n−1
∑

t=0

I¶Xt ≤ q♢e−iωt.

For ω ∈ R and τ1, τ2 ∈ [0, 1] the copula rank periodogram (for short CR periodogram) is
defined as

Iτ1,τ2

n,R (ω) := (2πn)−1dτ1

n,R(ω)dτ2

n,R(−ω), dτ
n,R(ω) :=

n−1
∑

t=0

I¶F̂n(Xt) ≤ τ♢e−iωt.
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Note the similarity between all the quantile periodograms and the cross-periodograms in
multivariate time series analysis (cf., e.g., Brillinger 1975, p. 235): Each periodogram is a
product of two frequency representation objects computed at frequencies (ω and −ω) that
sum to zero.

The estimator based on the discrete Fourier transformation of clipped time series was intro-
duced by Hong (2000), who used it for a test of pairwise independence. Hagemann (2013)
analyzed the special case of τ1 = τ2 in the presence of serial dependence. The case of distinct
quantile levels τ1 and τ2 (not necessarily equal) was discussed in Kley et al. (2016), where
weak convergence to a Gaussian process was established. Lee and Rao (2012) investigated
the distributions of Cramér-von Mises type statistics, based on empirical joint distributions.

As in the traditional case the new periodograms are not consistent estimators (cf. the pos-
itive variances of the limit distributions in Theorems 3.2 and 3.4 in Dette et al. 2015 or
Proposition 3.4 in Kley et al. 2016).

1.3. Smoothing the quantile periodograms

To achieve consistency of the estimators we convolve the sequence of periodograms (indexed
with the Fourier frequencies) with a sequence of weighting functions Wn. The smoothed
periodograms are defined as follows:

Definition 3 (Smoothed quantile-regression based periodograms)
For ω ∈ R and τ1, τ2 ∈ (0, 1) the smoothed Laplace periodogram f̂n(τ1, τ2; ω) and smoothed
rank-based Laplace periodogram f̂n,R(τ1, τ2; ω) are defined as

f̂n(τ1, τ2; ω) :=
2π

n

n−1
∑

s=1

Wn

(

ω − 2πs/n
)

L̂τ1,τ2

n (2πs/n),

f̂n,R(τ1, τ2; ω) :=
2π

n

n−1
∑

s=1

Wn

(

ω − 2πs/n
)

L̂τ1,τ2

n,R (2πs/n).

Definition 4 (Smoothed periodograms based on clipped time series)
For ω ∈ R and q1, q2 ∈ R the smoothed clipped time series periodogram is defined as

Ĝn(q1, q2; ω) :=
2π

n

n−1
∑

s=1

Wn

(

ω − 2πs/n
)

Iq1,q2

n (2πs/n).

For ω ∈ R and τ1, τ2 ∈ [0, 1] the smoothed copula rank periodogram is defined as

Ĝn,R(τ1, τ2; ω) :=
2π

n

n−1
∑

s=1

Wn

(

ω − 2πs/n
)

Iτ1,τ2

n,R (2πs/n).

When the weight functions are such that with n → ∞ only the weights in a shrinking neigh-
borhood of zero will be positive, the estimators will be consistent (cf. Theorem 3.7 in Kley
2014). Under suitable assumptions, scaled versions of Ĝn(·, ·; ω) and Ĝn,R(·, ·; ω) converge
weakly to complex-valued Gaussian processes (cf. Theorem 3.5 and 3.6 in Kley et al. 2016).
A comprehensive description of all estimators and their asymptotic properties is available in
Kley (2014).
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2. Conceptual design of the framework

2.1. An analysis of functional requirements

The quantspec software project was triggered by the development of the quantile-based meth-
ods for spectral analysis (cf. Section 1, Dette et al. 2015 and Kley et al. 2016). The primary
aim has been to make these new methods accessible to a wide range of users.

Before going into the programming-specific details of the project, a conceptual design, non-
specific to any programming language, was developed. By this procedure, additional insight
and a thorough documentation of the computational characteristics of quantile-based spectral
analysis could be gained. The conceptual design serves as a blueprint for implementations in
(possibly) various environments and can easily be transformed into an implementation plan
including the details specific to the respective programming environment.

Aiming for a software system that is most flexible in the ways in which it can be used, that
can easily be extended in functionality and also for the ease of its maintenance an object-
oriented design was chosen. This type of design also contributes to a structure of the system
that can be better understood, both by users and developers. The general structure of the
system for performing quantile-based spectral analysis is described using class diagrams of
the unified modeling language (UML). In these diagrams, all necessary components and their
interrelations are described in a formal manner.

To understand the specification of the framework, the essential elements of the UML are
described very briefly. Readers familiar with UML can skip this paragraph. Recall that in an
object-oriented design the components of the system are objects encapsulating both data and
behavior of a specific “real-world” entity. The structure of each object can thus be described
by a meaningful name (the class name), a collection of data fields (in R these are called
slots) and implementations of the behavior (in R these implementations are called methods).
In a class diagram each class (i.e., the composite of class name, data files and implemented
behavior) is represented as a rectangle subdivided into three blocks. The name of the class
is given in the top block, the data fields in the middle block and the methods in the bottom
block. Note that in the unified modeling language the data fields and methods are specified in
a standardized format. In this format the first symbol is an abbreviation used to specify the
visibility of the class member. Here the symbols “+” for public and “–” for private members
are used, indicating that the member is intended to be seen (and used) from outside the object
or from inside the object only, respectively. For a data field the name is then followed by a
colon and the type of the field. For a method the parameters are given in parenthesis; optional
parameters are denoted by two dots. In the class diagram, relationships between classes are
marked as lines connecting them. Currently two different types of relationships are modeled.
A line with a triangular shaped tip at one end is used to declare a generalization relationship
(sometimes also coined inheritance or “is a” relationship). The class at the end of the line
with the triangle is called the superclass or the parent, while the class on the other end is
called the subclass or the child. In particular this type of relationship implies that an object
that is an instance to the subclass and therefore provides all the subclasses’ data fields and
methods will also provide the data fields and methods of the superclass (and the superclasses’
superclass if there are such, etc.). The second type of relationship used in this framework is
that of an aggregation (sometimes called “has a” relationship). A line with a hollow diamond
at one end is used to denote this kind of relationship, where objects to the class at the end
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of the line with the diamond are the ones having objects of the class at the other end of the
line as a part of them. At each end of the line the so-called cardinalities are denoted in the
form of two numbers with dots in between them. The left number is the minimum number of
objects of that type in the relationship that need to exist, the right number is the maximum
number. A star is used to denote an unknown positive integer. If min and max cardinality
coincide they are displayed as one number without the dots.

For the class diagrams in this manuscript the classes are arranged in a way such that (when-
ever possible) generalization relationships are displayed with the superclass on top and the
subclasses in the bottom. Aggregations are shown with aggregated classes to the left and/or
the right of the class representing “the whole”.

A graphical representation of the framework for quantile-based spectral analysis is not given
in one holistic diagram, but in two class diagrams that are on display in Figures 1 and 2. The
structure of the framework is presented in two, thematically organized class diagrams rather
than in one, because the 13 classes and their relations could not be fitted easily onto one page
without breaking the above mentioned layout guidelines. On the other hand it was easy to
group the classes by two topics.

In the next sections, all classes of the framework and their relations are going to be thoroughly
described and motivated.

2.2. The base class ‘QSpecQuantity’ and its successors

Many of the quantities important for the quantile-based spectral analysis of a stationary time
series (i.e., the estimators of Definitions 1–4 and the model quantities (1)–(4)) are of the
functional form,

Qb : F × T1 × T2 → C, b = 1, . . . , B,

where F ⊂ R is a set of frequencies (e.g., F = [0, 2π)) and T1, T2 ⊂ R̄ are sets of levels. To
provide a common interface to these objects the abstract class ‘QSpecQuantity’ was intro-
duced. Its data fields (i.e., an array values, a vector of reals frequencies and a list with
two vectors of reals levels), are designed to store the sets

frequencies := ¶ω1, . . . , ωJ♢ ⊂ F,

levels[[1]] := ¶q1,1, . . . , q1,K1
♢ ⊂ T1,

levels[[2]] := ¶q2,1, . . . , q2,K2
♢ ⊂ T2,

and the family

values :=
(

Qb(ωj , q1,k1
, q2,k2

)
)

j=1,...,J ;k1=1,...,K1;k2=1,...,K2;b=1,...,B
.

Note that the handling of a family of B quantile spectral quantities is necessary when boot-
strapping replicates are present. The special case of only one function Q can easily be handled
by setting B = 1.

There are four classes inheriting the data structure and the method show1 from the ab-
stract class ‘QSpecQuantity’. Two such classes, ‘QuantilePG’ and ‘SmoothedPG’, implement
the computation of the various quantile periodograms and smoothed quantile periodograms,
respectively. A more detailed description has to include the other related classes and is

1The function show is used for printing objects of this class, and all superclasses, to the console.
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Figure 1: Classes implementing the quantile-based periodograms and smoothed periodograms.

therefore deferred to a separate section (i.e., Section 2.3). A graphical representation of the
relevant parts of the framework can be seen in Figure 1. The other two of the classes gen-
eralizing the abstract class ‘QSpecQuantity’ are referred to by the names ‘QuantileSD’ and
‘IntegrQuantileSD’. These two classes implement the model quantities (1)–(4). The graphi-
cal representation can be seen in Figure 2. A detailed description is deferred to Section 2.4.

2.3. Implementation of the quantile-based (smoothed) periodograms

The components relevant to the implementation of the quantile-based spectral statistics are
presented in Figure 1. As alluded to in the previous section the two classes ‘QuantilePG’ and
‘SmoothedPG’ will do the job, in conjunction with the superclass ‘QSpecQuantity’ from which
they inherit the data structure to store the computed values.

To better understand the implementation surrounding ‘QuantilePG’, observe that the quantile-
based periodograms defined in Definitions 1 and 2 share the common structure of an outer
product (scaled with (2πn)−1). To compute either one of the four periodograms

L̂τ1,τ2

n,R (ω), L̂τ1,τ2

n (ω), Iτ1,τ2

n,R (ω), τ1 ∈ T1, τ2 ∈ T2, ω ∈ F,

Iq1,q2

n (ω) q1 ∈ Q1, q2 ∈ Q2, ω ∈ F,
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it suffices to perform the same operation to one of the frequency representation objects

b̂τ
n,R(ω), b̂τ

n(ω), dτ
n,R(ω), τ ∈ T1 ∪ T2, ω ∈ F,

dq
n(ω) q ∈ Q1 ∪ Q2, ω ∈ F,

(6)

respectively. In the framework this fact is incorporated by introducing the abstract class
‘FreqRep’ and its two subclasses ‘ClippedFT’ and ‘QRegEstimator’, where the actual compu-
tations are implemented via the method initialization(). The class ‘FreqRep’ serves as a
common interface to the quantities in (6). It provides data fields to store various information,
including

• the observations Y from which the quantities were computed,

• the frequencies and levels for which the computation was performed,

• the result of the computation, which is stored in an array values.

Further more, a flag isRankBased indicates whether, prior to the main computations, the
observations (Xt) were transformed to pseudo-observations (F̂n(Xt)). Performing this extra
step will yield b̂τ

n,R(ω) instead of b̂τ
n(ω) or dτ

n,R(ω) instead of dτ
n(ω), respectively. The class

‘BootPos’ allows to perform a block bootstrap procedure by “shuffling” the observations and
repeatedly doing the computations on these bootstrapped observations. Currently only one
method, the ‘MovingBlocks’ bootstrap, is implemented.

Now, turning attention to the class ‘SmoothedPG’, recall that the various smoothed peri-
odograms are all defined similarly, in the sense that computing the smoothed periodogram
for ωj := 2πj/n, j = 1, . . . , n − 1 basically means to do a discrete convolution of the se-
quence of quantile periodograms computed at ωs with a sequence of appropriately chosen
weight functions Wn(ωs). Hence, everything needed for the smoothed periodogram is these
two ingredients, which is reflected in the framework by two aggregation relationships involv-
ing the class ‘SmoothedPG’. The first such relationship links ‘SmoothedPG’ to the ‘QuantilePG’
to be smoothed. The second such relationship links ‘SmoothedPG’ to a class ‘Weight’, which
provides a common interface to different weight functions. Currently two implementations
are included. Employing weights of type ‘KernelWeight’, defined by a kernel W and a scale
parameter bw (bandwidth), will yield an estimator for the quantile (i.e., Laplace or copula)
spectral density. An alternative is to use weights of type ‘SpecDistrWeight’, which yields
estimators for the integrated quantile (i.e., Laplace or copula) spectral density.

2.4. Implementation of the quantile-based spectral measures

The classes ‘QuantileSD’ and ‘IntegrQuantileSD’ were introduced to the framework to make
the quantities (1)–(4) available to the user.

To obtain access to a quantity of the form (1) or (2), an instance of ‘QuantileSD’ can be
created. In this case, R independent copies of a time series of length N are obtained by
calling the function ts. The function ts is a parameter to specify the model for which to
obtain the model quantity and it handles the simulation process. Then, for each of these
time series a ‘QuantilePG’ object is created and their values are averaged: first across the R

independent copies, saving the result to meanPG and an estimation of the standard error to
stdError. After that the averages are averaged again for each combination of levels across
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Figure 2: Classes for the numerical computation of (integrated) copula and Laplace spectral
densities via simulation.

frequencies by smoothing. The result is then made available via the data field values of the
superclass. By a call to the method increasePrecision the number of independent copies
can be increased at any time to yield a less fluctuating average.

To obtain access to quantities of the form (3) or (4), an instance of ‘IntegrQuantileSD’ can
be created. For the computation an object of type ‘QuantileSD’ is created and subsequently
the integral is approximated via a Riemann sum.

3. Reference implementation: The R package quantspec

3.1. Overview

The quantspec package (Kley 2015) is intended to be used both by theoretically oriented
statisticians and also by data analysts, who work on a more applied basis. In order to
address this broad group of potential users the R system for statistical computing (R Core
Team 2014) was chosen as a platform. The R system is particularly well suited for the
realization of this project, because it is accessible from many operating systems, without
charge, already available to the targeted audience and, in particular, allows to integrate the
package’s functionality among many other, well developed packages. An important example
is that the function rq of the quantreg package (Koenker 2015) could be used.

Both R and the quantspec package are available from the Comprehensive R Archive Net-
work (CRAN) at https://CRAN.R-project.org/package=quantspec). The package’s de-
velopment is actively continued with the source code available from a GitHub repository
(https://github.com/tobiaskley/quantspec). Besides the source code of the releases,
which are also available from the CRAN servers, the GitHub repository additionally contains
a detailed history of all changes, including comments, that were applied to the source code

https://CRAN.R-project.org/package=quantspec
https://github.com/tobiaskley/quantspec
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since 2014-04-10, when the GitHub repository was created. The repository is organized into
several branches: the master branch, the develop branch and possibly several topic branches.
Since version 1.0-0 the master branch contains the source code of all release candidates and
official releases, the develop branch contains the most recent updates and bug fixes that
were not yet released. The topic branches contain the source code in which extensions to the
package are developed.

To install a package from the source code straight from the repository use the install_github

function of the devtools package (Wickham and Chang 2015). More precisely, install the
devtools package, if it is not already installed, and call

> library("devtools")

> install_github("tobiaskley/quantspec", ref = "master")

Instead of using "master", another branch (e.g., "develop" to pull the most recent updates)
or a tag that is pointing to one of the releases (e.g., "v1.0-0-rc1", to install the 1st release
candidate to version 1.0-0) can be used as ref. Note that, in case you are using Windows,
to use install_github, you may need to install the Rtools,2 if you have not already done
so. Note that the code in the develop branch is merged into the master branch only for a
release (candidate) and after being thoroughly tested, so if you are installing from the develop

branch you will potentially be using code that has not been fully tested. Use the optional
argument build_vignettes = FALSE if you do not have LATEX installed on your system; i.e.,
call

> library("devtools")

> install_github("tobiaskley/quantspec", ref = "master",

+ build_vignettes = FALSE)

3.2. R code intended for the user and its documentation

The classes of the quantspec package, their methods, slots, dependencies and inheritance
properties are implemented as conceptually designed (cf. Section 2). Recall that the design
was presented in form of class diagrams, on display in Figures 1 and 2, and that no specific
programming language was assumed. All classes that are intended for the end-user possess a
constructor method with the same name as the class itself but beginning with a lower case
letter. The classes intended for the end-user and their constructors are listed in Table 1.

For a more detailed description of constructors and classes, documentation within the online
help system of R is available. After loading the package, which is done by calling

> library("quantspec")

the help file of the package, which provides an overview on the design, can be called by
executing

> help("quantspec")

2Available from https://CRAN.R-project.org/bin/windows/Rtools/.

https://CRAN.R-project.org/bin/windows/Rtools/
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Constructor Type of object Quantities computed

clippedFT ClippedFT dq
n(ω), dτ

n,R(ω)

qRegEstimator QRegEstimator bτ
n(ω), bτ

n,R(ω)

quantilePG QuantilePG L̂τ1,τ2

n (ω), L̂τ1,τ2

n,R (ω),

Iq1,q2

n (ω), Iτ1,τ2

n,R (ω)

smoothedPG SmoothedPG f̂n(τ1, τ2; ω), f̂n,R(τ1, τ2; ω),

Ĝn(q1, q2; ω), Ĝn,R(τ1, τ2; ω)
quantileSD QuantileSD fq1,q2

(ω), fqτ1
,qτ2

(ω)

integrQuantileSD IntegrQuantileSD Fq1,q2
(ω), Fqτ1

,qτ2
(ω)

kernelWeight KernelWeight Wn(u) = b−1
n

∑

j W (b−1
n (u + 2πj))

spectrDistrWeight spectrDistrWeight Wn(u) = I¶u ≤ 0♢

Table 1: Constructors of the quantspec package that are intended for the end-user.

on the R command line. Note that an index of all available functions can be accessed
at the very bottom of the page. If for example more information on the constructor of
‘QRegEstimator’ and on the class itself is desired, then ?qRegEstimator or ?QRegEstimator

should be invoked to access the corresponding help pages. Using this class to determine the
frequency representation bτ

n,R(ω), for τ ∈ ¶0.25, 0.5, 0.75♢ would look as follows. In a toy
example, where eight independent random variables X0, . . . , X7 ∼ N(0, 1) are generated and
used to compute bτ

n,R(ω), call

> Y <- rnorm(8)

> bn <- qRegEstimator(Y, levels = c(0.25, 0.5, 0.75))

By default the computation is done for all Fourier frequencies ω = 2πj/n ∈ [0, π], n = 8,
j = 0, . . . , ⌊n/2⌋. The computed information can then be viewed by typing the name of the
variable (i.e., bn) in the R console:

> bn

QRegEstimator (J = 5, D = 1, K = 3, B+1 = NA)

Frequencies: 0 0.7854 1.5708 2.3562 3.1416

Levels : 0.25 0.5 0.75

Values:

tau = 0.25 tau = 0.5 tau = 0.75

0 2.000+0.000i 4.000+0.000i 6.00+0.000i

0.785 0.061-0.561i -0.354+0.439i 0.00-0.707i

1.571 0.250+1.750i 0.750-0.250i 0.75-0.250i

2.356 0.250+0.750i 1.250-0.189i 1.25-0.189i

3.142 -0.500+0.000i -0.500+0.000i 0.50+0.000i

Methods other than the constructor are implemented as generic functions. To invoke the
method f of an object ‘obj’ the call therefore is f(obj). In particular all attributes mentioned
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in the class diagram can be accessed via getter methods. There are no setter methods, because
all attributes are completely handled by internal functions. For an example, to retrieve the
attributes frequencies and parallel of the object bn, execute the following lines on the R

shell

> getFrequencies(bn)

[1] 0.0000000 0.7853982 1.5707963 2.3561945 3.1415927

> getParallel(bn)

[1] FALSE

To invoke a method f with parameters p1, ..., pk of an object ‘obj’ the call is f(obj, p1,

..., pk). An example is to invoke the accessor function getValues, which is equipped with
parameters to get the values associated with certain frequencies or levels. An exemplary
call looks like this:

> getValues(bn, levels = c(0.25, 0.5))

, , 1

[,1] [,2]

[1,] 2.00000000+0.0000000i 4.0000000+0.0000000i

[2,] 0.06066017-0.5606602i -0.3535534+0.4393398i

[3,] 0.25000000+1.7500000i 0.7500000-0.2500000i

[4,] 0.25000000+0.7500000i 1.2500000-0.1893398i

[5,] -0.50000000+0.0000000i -0.5000000+0.0000000i

[6,] 0.25000000-0.7500000i 1.2500000+0.1893398i

[7,] 0.25000000-1.7500000i 0.7500000+0.2500000i

[8,] 0.06066017+0.5606602i -0.3535534-0.4393398i

Note that the result is returned as an array of dimension c(J, K, B + 1), where in the
present case B = 0 bootstrap replications were performed. For a detailed description on how
to use the function getValues in the above mentioned case, access the online help via the
command

> help("getValues-FreqRep")

Note the format method_name-class_name to access the help page of a method and that the
attribute values is part of the abstract class ‘FreqRep’ (cf. Figure 2).

A graphical representation of the data can easily be created by applying the plot command.
For example, to compute and plot the frequency representations dτ

32,R(ω), from 32 simulated,
standard normally distributed random variables execute the following lines on the R shell:

> dn <- clippedFT(rnorm(32), levels = seq(0.05, 0.95, 0.05))

> plot(dn, frequencies = 2 * pi * (0:64) / 32, levels = c(0.25, 0.5))
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Figure 3: Plot of the FrequencyRepresentation object bn.

The above script will yield the diagrams that are on display in Figure 3. Note that the dτ
32,R(ω)

were determined for τ ∈ ¶0.05, 0.1, . . . , 0.9, 0.95♢ and, by the default setting, for all Fourier
frequencies from [0, π]. The plot, however, was parametrized to show only τ ∈ ¶0.25, 0.5♢, but
all Fourier frequencies from [0, 4π]; by default all available levels and frequencies would
be used. In this example two of the 19 frequencies were selected to yield a plot of a size that is
appropriate to fit onto the page. Furthermore, the plot was parametrized to show dn,R(ω) for
all Fourier frequencies from [0, 4π] to illustrate characteristic redundancies in the frequency
representation objects, and to point out that the default values are always sufficient. The two
relations

dτ
n,R(ω) = dτ

n,R(2π − ω), dτ
n,R(ω) = dτ

n,R(ω + 2πj),

hold for any ω ∈ R and j ∈ Z, dτ
n,R(ω). Therefore, without additional calculations, the

plot of dτ
n,R(ω) can be determined for any ω ∈ 2πj/n, j ∈ Z, as long as dτ

n,R(ω) is known
for ω ∈ 2πj/n, j = 0, . . . , ⌊n/2⌋, which is what is determined by the default setting. Note
that all of this happens transparently for the user, as the method getValues takes care of
it. Another fact that one can presume by inspecting Figure 3 is that dτ

n,R(ω) appears to be
uncorrelated and centered (for ω ̸= 0 mod 2π).

3.3. Additional elements of the package

The quantspec package includes three demos that can be accessed via

> demo("sp500")

> demo("wheatprices")

> demo("qar-simulation")

Several examples explaining how to use the various functions of the package can be found in
the online help files or the folder examples in the directory where the package is installed.
The package comes with two data sets sp500 and wheatprices that are used in the demos
and in the examples. A package vignette amends the online help files. It contains the text
of this paper. Unit tests covering all main functions were implemented using the testthat

framework (Wickham 2011).
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Figure 4: Returns (Yt) of the S&P 500 returns example data (left), autocovariances
COV(Yt+k, Yt) of the returns (middle), and autocovariances COV(Y 2

t+k, Y 2
t ) of the squared

returns (right).

4. Two worked examples

4.1. Analysis of the S&P 500 stock index, 2007–2010

In this section the use of the quantspec package from the perspective of a data analyst is
explained. To this end an analysis of the returns of the S&P 500 stock index is performed.
Note that a similar analysis as well as the data set used are available in the package. Calling
demo("sp500", package = "quantspec") will start the computations and by sp500 the
data set can be referenced to do additional analysis.

For the example the years 2007 through to 2010 were selected to have a time series that, at
least to some degree, can be considered stationary. Aside from this more technical consid-
eration, employing the new statistical toolbox will reveal interesting features in the returns
collected in the financial crisis that completely escape the analysis with the traditional tools
blindly applied.

For a start, use the following R script to plot the data using the zoo package (Zeileis and
Grothendieck 2005), the autocovariances of the returns and the autocovariances of the squared
returns.

> library("zoo")

> plot(sp500, xlab = "time t", ylab = "", main = "")

> acf(coredata(sp500), xlab = "lag k", ylab = "", main = "")

> acf(coredata(sp500)^2, xlab = "lag k", ylab = "", main = "")

The three plots are displayed in Figure 4. Inspecting them, it is important to observe that the
returns themselves appear to be almost uncorrelated. Therefore, not much insight into the
serial dependency structure of the data can be expected from traditional spectral analysis.
The squared returns on the other hand are significantly correlated. This observation, typically
taken as an argument to fit an ARCH or GARCH model, clearly proves that serial dependency
exists. In what follows the copula spectral density will be estimated from the data, using
quantile periodograms and smoothing them. It will be seen that using the quantspec package
this can be done requiring only a few lines of code.
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irst, take a look at the CR periodogram Iτ1,τ2

n,R (ω). In the quantspec package it is represented
as a ‘QuantilePG’ object and can be computed calling the constructor function quantilePG()

with the parameter type = "clipped". To do the calculation for τ1, τ2 ∈ ¶0.05, 0.5, 0.95♢, all
Fourier frequencies ω and with 250 bootstrap replications determined from a moving blocks
bootstrap with block length ℓ = 32, it suffices to execute the first command of the following
script:

> CR <- quantilePG(sp500, levels.1 = c(0.05, 0.5, 0.95),

+ type = "clipped", type.boot = "mbb", B = 250, l = 32)

> freq <- getFrequencies(CR)

> plot(CR, levels = c(0.05, 0.5, 0.95),

+ frequencies = freq[freq > 0 & freq <= pi],

+ ylab = expression({I[list(n, R)]^{list(tau[1], tau[2])}}(omega)))

Using the second command it is possible to learn for which frequencies the values of the CR
periodogram are available. As pointed out in the previous paragraph it was computed for all
Fourier frequencies from the interval [0, 2π), which is the default setting for quantilePG()

and smoothedPG(). With the third command the graphical representation of the CR pe-
riodogram, which can be seen in Figure 5, is plotted. The plot seen here is a typical plot
of any ‘QSpecQuantity’ object: In a configuration with K levels the plot has the form of a
K × K matrix, where the subplots on and below the diagonal display the real part of the CR
periodogram Iτ1,τ2

n,R (·), with the levels τ1 and τ2 denoted on the left and bottom margins of
the plot. Above the diagonal the imaginary parts are shown.

To observe the larger values in the neighborhood of ω = 0 and in the extreme quantile levels
more closely a plot showing the CR periodogram only for frequencies ω ∈ [0, π/5] can be
generated using the following script:

> plot(CR, levels = c(0.05, 0.5, 0.95),

+ frequencies = freq[freq > 0 & freq <= pi/5],

+ ylab = expression({I[list(n, R)]^{list(tau[1], tau[2])}}(omega)))

The plot is shown in Figure 6.

In the next step the computed quantile periodogram CR can be used as the basis to de-
termine a smoothed CR periodogram sCR. In the form of a ‘SmoothedPG’ object it can be
generated by the constructor smoothedPG() of that class. Besides the ‘QuantilePG’ ob-
ject CR, a ‘KernelWeight’ object is required, which is easily generated using the constructor
kernelWeight(). As parameters the constructor kernelWeight() requires a kernel W and a
bandwidth bw. The quantspec package comes with several kernels already implemented. The
Epanechnikov kernel for example can be referred to by the name W1.

To compute the smoothed CR periodogram from CR using the Epanechnikov kernel and
bandwidth bw = 0.07 the first of the following two commands needs to be executed.

> sPG <- smoothedPG(CR, weight = kernelWeight(W = W1, bw = 0.07))

> plot(sPG, levels = c(0.05, 0.5, 0.95), type.scaling = "individual",

+ frequencies = freq[freq > 0 & freq <= pi], ptw.CIs = 0.1,

+ ylab = expression(hat(G)[list(n, R)](list(tau[1], tau[2], omega))))
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Of course, the second line initiates plotting the smoothed CR periodogram, which is on
display in Figure 7. Note that the option type.scaling can be set to yield a plot with
certain subplots possessing the same scale. In Figure 7 pointwise confidence intervals are
shown. By default these are determined using a normal approximation to the distribution of
the estimator as is suggested by the limit theorem in Kley et al. (2016). An alternative is to
use the quantiles of estimates computed from the block bootstrap replicates. These pointwise
confidence intervals can be plotted using the option type.CIs = "boot.full", as is shown
in the following script:

> plot(sPG, levels = c(0.05, 0.5, 0.95), type.scaling = "real-imaginary",

+ ptw.CIs = 0.1, type.CIs = "boot.full",

+ frequencies = freq[freq > 0 & freq <= pi],

+ ylab = expression(hat(G)[list(n, R)](list(tau[1], tau[2], omega))))

For illustrative purposes a different type of scaling was used for the second plot. A complete
description of the options is available in the online help, which can be accessed by calling

> help("plot-SmoothedPG")

Inspecting the plots in Figures 5–8 reveals information about the dependency of the events
¶Xt ≤ q0.05♢, ¶Xt ≤ q0.5♢ and ¶Xt ≤ q0.95♢ in the data. More precisely, the top left, middle
and bottom right plots show the copula rank periodograms, in Figures 5 and 6, and smoothed
copula rank periodograms, in Figures 7 and 8, that are estimates of the copula spectra
fq0.05,q0.05

(ω), fq0.5,q0.5
(ω) and fq0.95,q0.95

(ω), respectively. Each set of three plots summarizes the
serial dependency structure of the three binary time series I¶Xt ≤ q0.05♢, I¶Xt ≤ q0.5♢ and
I¶Xt ≤ q0.95♢ that indicate values of Xt below the 0.05-quantile, median and 0.95-quantile,
respectively. The fact that, in the data example discussed here, these copula spectra are not
flat can be seen as evidence that serial dependency is present; this cannot be seen from the
autocorrelations. Comparing the two outer spectra allows for a comparison between the serial
dependency structure in positive and negative extremes; this information completely gets lost
when the observations are squared. In the analyzed S&P 500 data from 2007–2010 there
seems to be only little difference between the serial dependency structure of the two types of
extreme events. Note that this is not always the case. In the QAR model to be discussed
in the next section, for example, the serial dependency structure of the positive and negative
extremes is remarkably different (cf. Figures 9 and 10).

Additional information can be found in the off-diagonal plots. Take for example the bottom
left and top right plots where the real and imaginary part of fq0.05,q0.95

(ω) are shown, respec-
tively. This quantity contains information on the joint serial dependence of the two binary
time series I¶Xt ≤ q0.05♢ and I¶Xt ≤ q0.95♢. For example, if the imaginary part were zero for
all frequencies this would correspond to a pairwise time reversibility in the sense that

P(Xt ≤ q0.05, Xt−k ≤ q0.95) = P(Xt ≤ q0.05, Xt+k ≤ q0.95),

for all k. This information cannot be recovered from autocovariances, because they are
symmetric by definition. Further discussion of copula spectra can, for example, be found in
Li (2008); Hagemann (2013); Li (2012); Dette et al. (2015); Kley et al. (2016); Birr, Volgushev,
Kley, Dette, and Hallin (2014).

This concludes the introduction of the quantspec package for data analysts and we can con-
tinue with the presentation of how it can also make the work of a probability theorist easier.
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Figure 5: Plot of the QuantilePG object CR, computed from the sp500 time series;
ω ∈ (0, π].
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Figure 6: Plot of the QuantilePG object CR, computed from the sp500 time series;
ω ∈ (0, π/5].
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Figure 7: Plot of the SmoothedPG object sCR, computed from the sp500 time series;
type.scaling = "individual", ptw.CIs = 0.1.
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Figure 8: Plot of the SmoothedPG object sCR, computed from the sp500 time series;
type.scaling = "real-imaginary", ptw.CIs = 0.1,
type.CIs = "boot.full".
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4.2. A simulation study: Analyzing a quantile autoregressive process

In this section using the quantspec package from the perspective of a probability theorist is
explained. The aim is twofold. On the one hand, further insight into a stochastic process shall
be gained. Any strictly stationary process for which a function to simulate finite stretches
of is available can be studied. On the other hand, the finite sample performance of the
new spectral methods are to be evaluated. Note that the example discussed in this section
and the functions to simulate QAR(1) processes are available inside the package, by calling
demo("qar-simulation", package = "quantspec") and by referring to the function ts1,
which implements the QAR(1) process that was discussed in Dette et al. (2015) and Kley
et al. (2016). Recall that a QAR(1) process is a sequence (Xt) of random variables that fulfills

Xt = θ1(Ut)Xt−1 + θ0(Ut),

where Ut is independent white noise with Ut ∼ U [0, 1], and θ1, θ0 : [0, 1] → R are model
parameters (Koenker and Xiao 2006). The function ts1 implements the model, where θ1(u) =
1.9(u − 0.5), u ∈ [0, 1] and θ0 = Φ−1, which was discussed in Dette et al. (2015) and Kley
et al. (2016). A complete list of models included in the package can be seen in the online
documentation of the package by calling

> help("ts-models")

The following, two-line script can be used to generate the graphical representation of the
copula spectral density that is on display in Figure 9:

> csd <- quantileSD(N = 2^9, seed.init = 2581, type = "copula",

+ ts = ts1, levels.1 = c(0.25, 0.5, 0.75), R = 100, quiet = TRUE)

> plot(csd, ylab = expression(f[list(q[tau[1]], q[tau[2]])](omega)))

Figure 9 should be read in a way similar to Figures 5–8. Here, the red line represents the
simulated spectrum, and the black line is an indicator for the precision of the simulation.
When analyzing a time series model the recommended practice is to compute the quantile
spectral density once with high precision, store it to the hard drive, and load it later whenever
it is needed. The following two lines of code can be used to do this:

> csd <- quantileSD(N = 2^12, seed.init = 2581, type = "copula",

+ ts = ts1, levels.1 = c(0.25, 0.5, 0.75), R = 50000)

> save(csd, file = "csd-qar1.rdata")

With the first configuration (N = 29 and R = 100) the computation time was only around
three seconds. To compute the second csd object (with N = 212 and R = 50000) the
same machine needed roughly 2.5 hours. Storing the object in a file takes about 1MB of
hard disk space. Not only values and stdErrors are stored within the ‘QuantileSD’ ob-
ject; also the final state of the pseudo random number generator is stored and the method
increasePrecision can be used to add more simulation runs at any time to yield a better
approximation to the true quantile spectrum. More information on this method can be found
in the online help, which is accessible via

> help("increasePrecision-QuantileSD")
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Once the computation is finished the diagram in Figure 10 can be created using the following
two lines of code:

> load("csd-qar1.rdata")

> plot(csd, frequencies = 2 * pi * (1:2^8) / 2^9,

+ ylab = expression(f[list(q[tau[1]], q[tau[2]])](omega)))

The parameter frequencies was used when plotting the copula spectral density to create a
plot that can be compared to the one in Figure 9. Note that by default the plot would have
been created using all available frequencies which yields a grid of 8 times as many points
on the x-axis (N = 212 vs. N = 29). Now, to get a first idea of how well the estimator
performs, plot the smoothed CR periodogram computed from one simulated QAR(1) time
series of length 512:

> sCR <- smoothedPG(ts1(512), levels.1 = c(0.25, 0.5, 0.75),

+ weight = kernelWeight(W = W1, bw = 0.1))

> plot(sCR, qsd = csd,

+ ylab = bquote(paste(hat(G)[list(n, R)](list(tau[1], tau[2], omega)),

+ " and ", f[list(q[tau[1]], q[tau[2]])](omega))))

The generated plot is on display in Figure 11. It is worth pointing out that in this example
(N = 512) the estimator performs already quite well. Note that a different version of the
constructor smoothedPG() was used here than in Section 4.1. When computing a smoothed
quantile periodogram straight from a time series, the syntax is the same as for quantilePG(),
but with the additional parameter weight.

Finally, for the simulation study, R = 5000 independent QAR(1) time series are generated.
Before the actual simulations, some variables that determine what is to be simulated are
defined:

> set.seed(2581)

> ts <- ts1

> N <- 128

> R <- 5000

> freq <- 2 * pi * (1:16) / 32

> levels <- c(0.25, 0.5, 0.75)

> J <- length(freq)

> K <- length(levels)

> sims <- array(0, dim = c(4, R, J, K, K))

> weight <- kernelWeight(W = W1, bw = 0.3)

Setting the seed in the very beginning allows for reproducible results. Recall that ts1 is
a function to simulate from the QAR(1) model to be studied. N is the length of the time
series and also the number of Fourier frequencies for which the quantile periodograms will
be computed. By the parameter freq a subset of these Fourier frequencies is specified to be
stored; a subset is used to save storage space. The estimates at these frequencies freq and
at the specified levels are then stored to the array sims. In this example, the smoothed
periodograms are computed using the Epanechnikov kernel and the (rather large) bandwidth
of bn = 0.3.
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Figure 9: Plot of the copula spectral density fqτ1
,qτ2

(ω) of the QAR(1) model;
τ1, τ2 ∈ ¶0.25, 0.5, 0.75♢, and ω ∈ [0, π]; N = 29 and R = 100.
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Figure 10: Plot of the copula spectral density fqτ1
,qτ2

(ω) of the QAR(1) model;
τ1, τ2 ∈ ¶0.25, 0.5, 0.75♢, and ω ∈ [0, π]; N = 212 and R = 50000.
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Figure 11: Plot of a smoothed CR periodogram, computed from one realization of a QAR(1)
time series; n = 512, Epanechnikov kernel with bn = 0.1.

For the actual simulation the following for loop can be used:

> for (i in 1:R) {

+ Y <- ts(N)

+ CR <- quantilePG(Y, levels.1 = levels, type = "clipped")

+ LP <- quantilePG(Y, levels.1 = levels, type = "qr")

+ sCR <- smoothedPG(CR, weight = weight)

+ sLP <- smoothedPG(LP, weight = weight)

+ sims[1, i, , , ] <- getValues(CR, frequencies = freq)[, , , 1]

+ sims[2, i, , , ] <- getValues(LP, frequencies = freq)[, , , 1]

+ sims[3, i, , , ] <- getValues(sCR, frequencies = freq)[, , , 1]

+ sims[4, i, , , ] <- getValues(sLP, frequencies = freq)[, , , 1]

+ }

Note that the flexible accessor method getValues is used to access the relevant subset of
values for the frequencies specified (i.e., freq). Once the array sims is available, many
interesting properties of the estimator can be analyzed. Examples include the bias, variance,
etc. Here, using the function getValues again, the true copula spectral density is copied to
an array trueV. Using the arrays sims and trueV the root integrated mean squared errors
are computed as follows:
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> trueV <- getValues(csd, frequencies = freq)

> SqDev <- array(apply(sims, c(1, 2),

+ function(x) {abs(x - trueV)^2}), dim = c(J, K, K, 4, R))

> rimse <- sqrt(apply(SqDev, c(2, 3, 4), mean))

> rimse

, , 1

[,1] [,2] [,3]

[1,] 0.03292733 0.03543752 0.02879294

[2,] 0.03543752 0.04113916 0.03427386

[3,] 0.02879294 0.03427386 0.03014753

, , 2

[,1] [,2] [,3]

[1,] 0.02688778 0.03275136 0.02691644

[2,] 0.03275136 0.03447488 0.03191837

[3,] 0.02691644 0.03191837 0.02526850

, , 3

[,1] [,2] [,3]

[1,] 0.004338658 0.005889695 0.004472232

[2,] 0.005889695 0.006794010 0.005428915

[3,] 0.004472232 0.005428915 0.004917286

, , 4

[,1] [,2] [,3]

[1,] 0.005133067 0.005699958 0.004575845

[2,] 0.005699958 0.006179409 0.005386339

[3,] 0.004575845 0.005386339 0.004797662

These numbers could now be inspected to observe, for example, that the smoothed quan-
tile periodogram possess smaller root integrated mean squared errors than the quantile pe-
riodograms (without smoothing). Further discussion of the results is omitted, because the
purpose of this chapter was to explain how to implement the simulation study, not to actually
perform it.

5. Roadmap to future developments and concluding remarks

As the new methodology evolves additional features will be added to the quantspec package.
For each new feature an entry to the issue tracker available on the GitHub repository will be
made. Then the new feature will be implemented on a topic branch of the repository. For
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example, an extension that will allow to analyze multivariate time series is currently being
developed.

Other, more complex extensions to the software include the implementation of functions
to perform quantile spectral analysis for locally stationary processes, the computation and
smoothing of higher order quantile periodograms for the estimation of quantile polyspectra.
Procedures for graphical representations of these objects, possibly animated ones, will amend
these planned parts of the package.

Summing up, it can be said that the quantspec package provides a comprehensive and con-
clusive toolbox to perform quantile-based spectral analysis. Due to the great interest in and
active development of the statistical procedures that perform quantile-based spectral analy-
sis it was deliberately designed in an object-oriented and extensible fashion. Thus it is well
prepared for the many extensions that are sure to come in the near future. The source code
is open and extensive documentation of the system is freely available. Comments on and
contribution to the project are, of course, very much welcome.
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