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Abstract

We develop methods for parameter estimation in settings with large-scale data sets,
where traditional methods are no longer tenable. Our methods rely on stochastic approx-
imations, which are computationally efficient as they maintain one iterate as a parameter
estimate, and successively update that iterate based on a single data point. When the
update is based on a noisy gradient, the stochastic approximation is known as standard
stochastic gradient descent, which has been fundamental in modern applications with large
data sets. Additionally, our methods are numerically stable because they employ implicit
updates of the iterates. Intuitively, an implicit update is a shrinked version of a stan-
dard one, where the shrinkage factor depends on the observed Fisher information at the
corresponding data point. This shrinkage prevents numerical divergence of the iterates,
which can be caused either by excess noise or outliers. Our sgd package in R offers the
most extensive and robust implementation of stochastic gradient descent methods. We
demonstrate that sgd dominates alternative software in runtime for several estimation
problems with massive data sets. Our applications include the wide class of generalized
linear models as well as M-estimation for robust regression.

Keywords: stochastic gradient descent, implicit updates, massive data, exponential family,
generalized linear models, M-estimation.

1. Introduction

Massive data sets as well as streaming data, in which one observes only a group of data points
at a time, are becoming increasingly common in modern statistical analysis. Under the setting
of hundreds of millions of observations and hundreds or thousands of covariates (National
Research Council 2013), it becomes difficult to estimate the parameters of a statistical model;
the three ideal properties are computational efficiency, statistical optimality, and numerical
stability, and it is challenging to address all three with a single estimation method.
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More formally, suppose there exists a vector of parameters 6, € RP and that we observe
iid. samples D = {x,,y,}, for n = 1,2,...,N; in the n* data point (x,,y,), the out-
come y, € RY is distributed conditional on covariates x,, € RP according to a known den-
sity f(yn;Xn,0x), and thus the log-likelihood function for the entire data set D is given by
(6;D) = 27]1\[:1 log f(yn;Xn,#). The task is to estimate the true parameter value 6, when N
is infinite (streaming setting), or to approximate some estimator of 6, such as the maximum-
likelihood estimator §™!¢ = arg maxgers £(f; D), when N is finite.

Widely used methods for statistical estimation, such as Fisher scoring, the EM algorithm, and
iteratively reweighted least squares (Fisher 1925; Dempster, Laird, and Rubin 1977; Green
1984) are not feasible in such settings; either they strictly do not apply in the streaming
setting (infinite V), or they do not scale to large data (finite but large N). Fisher scoring, for
example, requires at each iteration the inversion of a p X p matrix and evaluation of the log-
likelihood over the full data set D. This roughly yields O(Np?*€) running time complexity,
which is prohibitive when N and p are large. In contrast, estimation with massive data sets
typically requires a running time complexity that is O(Np'~), i.e., that is linear in N but
sublinear in the parameter dimension p.

Such performance is achieved in general by the stochastic gradient descent (SGD) algorithm,
which was initially proposed by Sakrison (1965) as a modification of the Robbins-Monro
procedure (Robbins and Monro 1951) for recursive estimation. It is defined through the
iteration

0354 = %8 1 7,0,V log f(yn; Xn, 055). (1)

We will refer to Equation 1 as SGD with explicit updates, or explicit SGD for short, because the
next iterate Hflgd can be computed immediately after the n' data point (x,,y,) is observed.
The sequence 7, > 0 is the learning rate sequence, and is typically defined such that nvy, —
v > 0 as n — oo; the hyperparameter v > 0 is fixed and known as the learning rate parameter.
The sequence {C,} is a sequence of positive-definite matrices, such that C,, — C with C
known, and is used to better condition the iteration; in the simplest case C, = I, i.e., we
simply use the identity matrix, which results in first-order explicit SGD.

From a computational perspective, explicit SGD is efficient because it replaces the expensive
inversion of p X p matrices, as in Fisher scoring, by a scalar sequence v, > 0 and a matrix C,
that is fast to manipulate numerically, by design. Furthermore, the log-likelihood is evaluated
at a single observation y, given x,, rather than the entire data set D, which saves signifi-
cant computation time. From a theoretical perspective, explicit SGD is justified because the
theory of stochastic approximations (Robbins and Monro 1951, Theorem 1) implies that Hflgd
converges to a point 0 such that E(Vlog f(yn;Xn,0)) = 0. Under standard statistical
theory, E (Vlog f(yn;Xn,0x)) = 0, and this point is unique under typical regularity condi-
tions (Lehmann and Casella 1998, Theorem 5.1, p.463), such as concavity of log-likelihood;
this is true, for example, in the popular exponential family of statistical models (Brown 1986).
Therefore, 6, = 0y, i.e., explicit SGD converges to the true parameter value. In the finite
N setting, a similar condition holds where ged approximates 6™ if the n'" data point in
Equation 1 is an unbiased sample from the total N data points; see also Toulis and Airoldi
(2015b) for a review of applications of SGD on modern machine learning applications.

Despite these theoretical guarantees, explicit SGD requires careful tuning of the hyperpa-
rameter 7 in the learning rate: small values of the parameter make the iteration Equa-
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tion 1 very slow to converge in practice, whereas large values can cause numerical divergence.
Moreover, it is known that explicit SGD is statistically inefficient even when ~ is correctly
specified (Toulis, Airoldi, and Rennie 2014). In particular, the amount of information loss
from procedure Equation 1 depends on the spectral gap of the Fisher information matrix,
Z)=-E (V2 log f(yn; Xn, 9)), calculated at the true parameter value 6 = 0,. A large spec-
tral gap makes it hard, or even impossible, to make the learning rates large enough for fast
convergence, and also small enough for stability (Toulis and Airoldi 2015a, Section 3.5).

Motivated by these challenges, Toulis, Tran, and Airoldi (2015) introduced averaged implicit
stochastic gradient descent (AI-SGD), which is defined by the procedure

oim = 0™ | 4,0,V log f(yn; Xn, O20), @)
b= (1/n) Y60 “
i=1

The first key component of AI-SGD is the implicit update Equation 2. Note that it is implicit
because the next iterate 6™ appears on both sides of the equation. This simple modification
of the explicit SGD procedure offers several statistical advantages. In particular, assuming a
common starting point ind 1= gim . 2 g, one can show through a Taylor approximation of
Equation 2 around 6 that the implicit update satisfies

Ae;Lm = (I + ’Yncni(GOQ Xn, Yn))_lAengd + O(%%,)v (4)

where A6, = 6, — 0,,_1 for both methods, I is the identity matrix, and f(&o;xn,yn) =
~V20(00; Xn, yn) is the observed Fisher information matrix at 6y (equivalent to the Hessian
of the negative log-likelihood at 6y). Equation 4 implies that the implicit update Equation 2
is a shrinked version of the explicit update Equation 1. This shrinkage makes the iterations
significantly more stable in small-to-moderate samples, and also robust to misspecifications of
the learning rate parameter v (Toulis et al. 2014). The implicit update Equation 2 also has a
Bayesian interpretation, where 6™ is the posterior mode of a model with the standard multi-
variate normal N (6™, ~,,Cy,) as the prior, and f(6;X,,yn) as the likelihood. Thus it provides
an iterative form of regularization. In optimization, update Equation 2 is known as a proximal
update, and corresponds to a stochastic version of the proximal point algorithm (Rockafel-
lar 1976). Krakowski, Mahony, Williamson, and Warmuth (2007) and Nemirovski, Juditsky,
Lan, and Shapiro (2009) have shown that proximal methods fit better in the geometry of the
parameter space.

The second key component of AI-SGD is iterate averaging Equation 3, which guarantees op-
timal statistical efficiency under fairly relaxed conditions. Ruppert (1988) and Polyak and
Juditsky (1992) first proved that averaging of iterates can achieve statistical optimality in
the standard context of stochastic approximation with explicit updates; Toulis et al. (2015)
extended this result to the implicit sGD update Equation 2. Thus, AI-SGD is effectively a
recursive estimation method that is both statistically optimal and numerically stable, while
remaining applicable to the setting of massive and/or streaming data.

In this paper we develop statistically efficient SGD algorithms for generalized linear models—
extending Algorithm 1 of Toulis et al. (2014)—and also develop SGD algorithms to perform
high-dimensional M-estimation. This allows for scalable estimation of such models with mas-
sive and/or streaming data. We provide a publicly available package sgd (Tran, Toulis, and
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Airoldi 2015) written in R, which implements AI-SGD, as well as other SGD variants. In Sec-
tion 2, we develop the algorithms. Section 3 contains experiments on simulated and real-world
data, in which we demonstrate the advantages of the sgd package compared to alternative
software. In Section 4, we describe the interface of sgd and implementation details for its use
in practice.

2. Algorithms

In this section we develop algorithms which implement implicit SGD and AI1-sGD for gener-
alized linear models as well as M-estimation. We start by introducing an algorithm which
efficiently computes a generalization of implicit update Equation 2, which is useful for the
aforementioned applications.

2.1. Efficient computation of implicit updates

The main difficulty in applying AI-SGD is the solution of the multidimensional fixed point
equation for the implicit update Equation 2. In the large class of models where the likelihood
given covariate x depends on the parameter § only through the natural parameter n = x'6,
the solution of the fixed-point equation is computationally efficient. The general result is
given in Theorem 2.1, whereas the assumption is made more precise below.

Assumption 2.1. The likelihood £(0;Xy,,yn) = log f(yn;Xn,0) of parameter value 0 given
data point (Xn,yn) depends on 6 only through the product x,\0, i.e.,

g(&xna}’n) EE(XZ&XWYn)‘ (5)

A key implication of Assumption 2.1 is that the direction of the gradient of the log-likelihood
does not depend on the parameter value since Vlog f(yn;Xn,0) = £'(X,) 0; X, yn)Xn, where
the latter derivative is with respect to the natural parameter XZG and with fixed data x,,y,.
This property is crucial because it implies that the implicit update Equation 2 can be per-
formed once a scalar value is found that will appropriately scale the gradient.

Theorem 2.1. Suppose Assumption 2.1 holds. Then the gradient for the implicit iterate 0™
FEquation 2 is a scaled version of the gradient at the previous iterate, i.e.,

V log f(ymxmainm) = 5,V log f(Yn;XmeiLHiO‘ (6)

The scalar s, € R satisfies
ol T pim T .
Spkn—1 =¥ (Xn Hn_l + YnSnkn—1X, CnXn; Xn, Yn) ) (7)

_ (T pi .
where kp—1 = (X, 0™ 13X, ¥n)-

Theorem 2.1 shows that the gradient Vl1og f(yn;Xn, 0™) in the implicit update Equation 2
is in fact a scaled version of the gradient V log f(yn; Xy, 0™ ) that would appear in update
Equation 2 if we were applying explicit updates. Therefore, computing the implicit update
reduces to finding the scale factor s, € R. See Toulis and Airoldi (2015a, Threorem 4.1) for

a proof.
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Penalized likelihood. 1t is possible to regularize both explicit and implicit SGD by adding
a penalty to the log-likelihood. In particular, we consider the elastic net (Zou and Hastie
2005), where for some fixed « € [0, 1] the penalty function is

Pa(6) = (1~ 0) 1613 + a0 ®)

Adding the elastic net with a regularization parameter A € R to explicit SGD is straightfor-
ward:

051 = 05 + 7 Cin(V10g f(yni X, 035 ) = AV Pa(6;5)), (9)
where the gradient of the elastic net penalty is given by
VEs(31) = (1= )2 + asign(6). (10)
Here, the operation sign() is the element-wise sign operation, outputting 1 if ; > 0, —1 if
0; <0, and 0 otherwise.

For implicit SGD the update would be
eaizm = H;eril + 'YnCn(v log f()’n; Xn, gilm) - )‘vpa(a;zm)) (11)

However, it is not generally possible to compute update Equation 11. For example, Assump-
tion 2.1 does not hold because the gradient of the log-likelihood and the gradient of the penalty
generally have two different directions. This breaks the argument of Theorem 2.1, where the
direction of the update calculated at the next iterate #i™ is the same as the direction of the
update calculated at the previous iterate g™ ;.

To circumvent this problem, we simply penalize the previous iterate instead of the current,
i.e., perform the update

O = 0021 + 1Cn(V 10g f(yni Xn, 07) = AV Pa(6;21))- (12)
Then update Equation 12 is equivalent to
0" = 0521 + 1 Cn(5nV 10g f(¥n; Xn, O521) — AVPa(0521)), (13)
where the scale factor s,, satisfies
Spbin_1 =V’ <xI m A CL VP, (0 ) + ’ynsnnn_lx,TLCnxn;xn,yn> , (14)

and where k,_1 = £ (x,) 0™ ;x,,y,). A proof for this case with penalized likelihoods is

identical to the proof of Theorem 2.1.

Final algorithm for implicit updates. This analysis leads to Algorithm 1, which, for
models satisfying Assumption 2.1, implements the most general update Equation 13 of im-
plicit sGD with conditioning matrices and penalty. This algorithm applies a root-finding
procedure solving Equation 14 at every iteration, which is fast because the equation is one-
dimensional and the search bounds for the solution are known, having a diminishing range
O(7y). Indeed, the one-dimensional search is computationally negligible in practice, as we
see in Section 3.
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Algorithm 1 Efficient implementation of implicit update Equation 13

1: function IMPLICIT_UPDATE(Y (*; ), Yn, O™ 1, X, Yy Cny Pe)

2 # Compute search bounds B

3 Tn < ’Yngl (X;lr ;Lnil; Xn, Yn)

4: B+ [0,7,]

5: if r, <0 then

6 B+ [ry, 0]

7 end if

8 # Solve fized-point equation by a root-finding method

9: €=yl (%) 0 — 0%, CLV Py (0™ ) + €x,) Crxpn; X, ), € € B
10: Sp —&/rn

11: # Equivalent to implicit update Equation 13
12: return 6, + 7,Cy, (snﬁ’ (x:; s xn,yn) Xp — AV Py ( ;Lnll))
13: end function

We also note that because the implicit update Equation 17 effectively does regularization as a
shrinkage estimate (see Equation 4), the use of penalization is not as crucial in practice as it
is for explicit updates. We make extensive experiments using Algorithm 2 and also examine
this effect in Section 3.

2.2. Generalized linear models

In the family of generalized linear models (GLMs), the outcome y,, € R follows an exponential
family distribution conditional on x,,,

1
Yn | Xn ~ €XP {w(nnyn - b("?n))} C(yna ¢)7 T = X;zre*a (15)

where the scalar 1) > 0 is the dispersion parameter which affects the variance of the outcome,
¢(+,+) is the base measure, and b(-) is the log normalizer which ensures that the distribution
integrates to one.! Additionally, in a GLM it is assumed that E (y,|x,) = h(x, 6,), where
h : R — R is known as the transfer function (Nelder and Wedderburn 1972; Dobson and
Barnett 2008). A simple property of GLMs is that the transfer function is the first derivative
of the log normalizer, i.e., h(x, 0) = b/(x, 0), for all x,,, .

A straightforward implementation of explicit SGD for estimation with GLMs is

ngd = HSgd + 'Yncn [yn - h(xr—zresgd )]X" (16)

n—1 n—1
Similarly, the A1-SGD procedure can be written as

Hilm = eqllnll + anCn[yn - h(XrTLQilm)]Xn’
I
g, =~ gim

"'We present one-dimensional outcomes for simplicity. However, our theory easily extends to multidimen-
sional outcomes. Such an extension is given, for example, in Section 2.3 on M-estimation.

(17)
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Algorithm 2 Estimation of generalized linear models with AI-SGD

Initialize 6", 6y

forn=1,2,...do
Define ¢/ (x,) 0; %, yn) = yn — h(x,! 0)
Calculate implicit update

6« IMPLICIT_UPDATE(? (), Y, 0™ 1, X1, ¥, Cray Pay)

5: 0, +— - Hn 1+ Hlm
6: end for

By assumption, £(6;y,,%,) < (X, 0)y, — b(x,} 6,), and thus the log-likelihood depends on
parameter value 6, only through its linear combination with covariate value x,. Additionally,
Var (yn|x,) = (%, 0,)|/x.||%, and thus A’ > 0, which implies that £ is twice-differentiable
and concave, thus fulfilling Assumption 2.1.

Penalized likelihood. As argued before, one can add the elastic penalty by applying it to
the previous estimate instead of the current. That is, for fixed « € [0,1] and regularization
parameter A € R, the AI-SGD procedure for generalized linear models with elastic net is

i = O™ + 7, Ch ([yn — (O30 — AV Pa ;“11)) ’
S PR )
O, =—) O™

Algorithm 2 implements estimation of GLMs through AI-SGD based on updates Equation 18.

2.3. M-Estimation

Given a data set of N observations D = {(x,,yn)} and a convex function p : R — R*, the
M-estimator is defined as

o —arggrelllRI;Zp —x,0), (19)

where it is assumed y,, = XTTL 0,+€y, and €, are i.i.d. zero mean-valued noise. M-estimators are
especially useful in robust statistics (Huber 1964; Huber and Ronchetti 2009), as appropriate
choice of p can reduce the influence of outliers in data. Recently, there has been increased in-
terest in the literature for fast approximation of M-estimators due to their robustness (Donoho
and Montanari 2013; Jain, Tewari, and Kar 2014).

Typically in M-estimation, p is twice-differentiable around zero and
E (pI(Yn - Xzém)xn> =0, (20)

where the expectation is over the empirical data distribution. Therefore SGD algorithms can
be applied to approximate the M-estimator ™. Importantly, p is convex, which implies that
the conditions of Assumption 2.1 are met.
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Algorithm 3 M-estimation with AI-SGD

1: Initialize 61", 6y
2: forn=1,2,... do
3: Define ¢/ (%, 0; %, yn) = —p'(yn — %, 0)
4: Calculate implicit update
6 « IMPLICIT_UPDATE(? (), Y, 0™ 1, X, ¥, Cray Pay)
5 G, n1G, 4 Lo
6: end for

The AI-SsGD procedure for approximating M-estimators is

eizm = 92111 + WmCnlp (yn — X:L—Gilm)]xn, (21)

_ 1 <& .

0, = — g,". 22
e )

An outline of the procedure is given in Algorithm 3. As before, Algorithm 3 also includes the
optional use of a sequence of conditioning matrices C,, and a penalty function P,. The use
of penalization has particularly been considered as a way to merge the robustness properties
given by a choice of p with sparsity, e.g, through lasso (Owen 2007; Lambert-Lacroix, Zwald
et al. 2011; Li, Peng, and Zhu 2011).

It is also typical to assume that the density of €, is symmetric around zero. Therefore, it
also holds E (P/(Yn - XJL—Q*)Xn) = 0, where the expectation is over the true data distribution.
Hence sGD procedures can be used to estimate 6, in the case of an infinite stream of obser-
vations (N = 0o). We write Algorithm 3 for the case of finite NV, but it is trivial to adapt the
procedure to infinite V.

3. Experiments

In this section, we compare the SGD methods implemented in the sgd package, such as explicit
SGD and AI-SGD, with standard, deterministic optimization methods that are widely used in
statistical practice, such as glmnet (Friedman, Hastie, and Tibshirani 2010), biglm (Lum-
ley 2013), and speedglm (Enea, Meiri, and Kalimi 2015). We demonstrate in both massive
and streaming data settings that standard methods are not applicable, and furthermore that
SGD methods outperform such methods upon orders of magnitude in runtime and conver-
gence.

As standard methods are not competitive, we also compare the proposed SGD methods to
each other, e.g., comparing AI-SGD to explicit SGD, across a wide range of learning rate
specifications, including adaptive specifications such as AdaGrad (Duchi, Hazan, and Singer
2011) and RMSProp (Tieleman and Hinton 2012); more details on the specifications which
are available in sgd are given in Section 4.3.

All timings are carried out on a general-purpose 2.6 GHz Intel Core i5 processor, and are
reported for various algorithms which reach a thresholded Lo distance to the true parameter
value.
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3.1. Linear regression with the lasso

We follow an experiment used in benchmarking the glmnet package (Friedman et al. 2010,
Section 5.1), which fits GLMs with the elastic net penalty over a regularization path. As
glmnet was shown to outperform related software such as elasticnet (Zou and Hastie 2012)
and lars (Hastie and Efron 2013), we compare sgd strictly to glmnet. The design matrix
X with N observations and p predictors is generated from a normal distribution such that
each pair of predictors X;, X, has the same correlation p. Each of the N outcomes y,
n=1,2...N, is defined as

Yn = XIQ* + ken, (23)

where 6,; = (—1)7 exp(—2(j —1)/20) so that the elements of the true parameter value 6, have
alternating signs and are exponentially decreasing. The noise €, is distributed as a standard
normal, € ~ N(0,1), and k is chosen so that the signal-to-noise ratio is equal to 3.0. We run
glmnet with “covariance updates”, which takes advantage of sparse updates in the parameter
space to reduce the complexity of O(Np) calculations per iteration. It performs better in our
experiments than the “naive update” also considered in Friedman et al. (2010).

Table 1 outlines results for a combination of triplets (V,p, p), ranging from N = 1,000 ob-
servations and scaling up to N = 10 million. glmnet is seen to be competitive with sGD
procedures under the setting of N = 1,000 observations, and in fact glmnet slightly outper-
forms SGD algorithms for lower dimensions of N and p. It is in any higher dimensional setting
where sgd strictly dominates glmnet, as seen in the table where for example, with N = 50, 000
and p = 10,000, sgd is orders of magnitude faster.

Furthermore, glmnet is restricted by the memory limitations of computer hardware. For
example, simulations with 100, 000 observations and 10, 000 features require 8 GB in memory
for simply storing the data, and more is required for parameter storage and computational
overhead. For the sgd package, we simply stream the data points using bigmemory (Kane,
Emerson, and Weston 2013), which requires less than 500 MB of RAM for all our experiments,
a 16-fold decrease in memory requirements. This is not possible for glmnet in either the case of
real streaming data, or simply as a way to remove memory bottlenecks. In principle, gradient
descent algorithms such as glmnet can read and destroy data memory from disk as it loops
over the full data set; however, this is impractical as it requires such an expensive memory
access at each iteration.

We now compare the SGD algorithms. For small dimensional problems, explicit SGD achieves
faster runtime than AI-SGD as it does not require a one-dimensional search following Algo-
rithm 1. However, in high dimensions and high correlations, it becomes extremely difficult for
explicit SGD to even converge for this toy linear model. It is sensitive to the learning rate, and
any misspecification can cause it to diverge numerically. Thus, we were not able to obtain a
proper timing for explicit SGD in settings of either high correlation (p > 0.9) or high dimension
with medium correlation (p > 0.5). In practice one must tune the hyperparameter for explicit
SGD—thus requiring significant computational overhead and user input—while also closely
monitoring the stochastic gradients for consideration of other numerical issues. AI-SGD on the
other hand uses additional computation per iteration, which in high dimensions is negligible
compared to the cost of a stochastic gradient update. This additional computation leads to
significantly more robust updates and faster convergence.
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sgd (method="ai-sgd")
sgd (method="sgd")
glmnet

sgd (method="ai-sgd")
sgd (method="sgd")
glmnet

sgd (method="ai-sgd")
sgd (method="sgd")
glmnet

sgd (method="ai-sgd")
sgd (method="sgd")
glmnet

sgd (method="ai-sgd")
sgd (method="sgd")
glmnet

Table 1:

Correlation
0 0.1 0.2 0.5 0.9 0.95
N =1,000 p =100 (sec)
0.03 0.03 0.03 0.03 004 0.34
0.02 0.02 0.02 0.02 0.03 0.03
0.02 0.02 0.02 0.02 0.02 0.03
N =10,000 p = 1,000 (sec)
1.81 1656 1.78 150 1.85 1.83
2.78 290 293 281 - —
6.60 7.76 800 783 6.50 6.70
N = 50,000 p = 10,000 (min)
3.12 351 343 326 340 3.38
4.83 486 523 - - -
14.58 15.28 16.29 15.58 16.54 16.41
N = 1,000,000 p = 50,000 (min)
22.23 21.10 19.88 21.52 18.53 20.53
27.80 34.08 - - - —
N = 10,000,000 p = 100,000 (hr)
9.38 10.20 9.58 8.54 10.11 10.74

13.50 - -

Linear regression with the lasso. Timing (in various units) is displayed for 100
A values, averaged over 10 runs. The first line is sgd using AI-SGD and the second line is
sgd using explicit SGD. Omitted entries indicate failure of the algorithm; for explicit SGD it

numerically diverges, and for glmnet it could not run due to memory limitations.

3.2. Logistic regression with ridge penalty

Following benchmarks that are popular in the machine learning and optimization litera-
ture (Xu 2011; Shamir and Zhang 2012; Bach and Moulines 2013; Schmidt, Le Roux, and

Bach 2013), we perform large-scale logistic regression on four data sets:

e rcvl (Lewis, Yang, Rose, and Li 2004): text data set in which the task is to classify
documents belonging to class ccat, where we apply preprocessing provided by Bottou

(2012).

e covtype (Blackard 1998): data set consisting of forest cover types in which the task is

to classify for one specific class among 7 forest cover types.
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Description Type  Covariates Training set Test set A
covtype forest cover type sparse 54 464,809 116,203 1076
delta synthetic data dense 500 450,000 50,000 1072
revl text data sparse 47,152 781,265 23,149 107
mnist digit image features dense 784 60,000 10,000 1073

Table 2: Summary of data sets and the Ly regularization parameter A used.

e delta (Sonnenburg, Franc, Yom-Tov, and Sebag 2008): synthetic data offered in the
PASCAL Large Scale Challenge. We apply the default processing offered by the chal-
lenge organizers.

e mnist (Le Cun, Bottou, Bengio, and Haffner 1998): images of handwritten digits, where
the task is to classify digit 9 against all others.

A summary of the data sets is available in Table 3, where the number of observations are
typically on the order of several hundred thousand, and the covariates range from a few dozen
to tens of thousands. The regularization parameter A for the ridge penalty are set according
to those used in Xu (2011).

We compare to the following three packages: biglm (Lumley 2013) and speedglm (Enea et al.
2015), both of which perform approximate updates using iteratively reweighted least squares,
and LiblineaR (Helleputte 2015), which is a simple wrapper to a C++ library for regularized
linear classification. We use the stochastic dual coordinate ascent algorithm (Shalev-Shwartz
and Zhang 2013) in LiblineaR. In addition, we consider the mnlogit package (Hasan, Zhiyu,
and Mahani 2015), which implements multinomial logistic regression using the classical tech-
nique of Newton-Raphson, and exploits iterations over intermediate data structures for fast
Hessian calculations. For modest-sized problems, mnlogit is shown to be 10-50 times faster
than mlogit (Croissant 2013), VGAM (Yee 2010), and the multinom function in nnet (Ven-
ables and Ripley 2002). Finally, we also run the default function glm.fit as a baseline. We
note that mnlogit and glm.fit can be only employed for standard (unregularized) multino-
mial regression, so we run them without the ridge penalty.

Table 3 outlines the runtimes for the considered packages. The two SGD algorithms are orders
of magnitude faster than its competitors on all data sets. Interestingly, biglm and speedglm
failed to run on the three real data sets when attempting to invert subsets of the data, and
only succeeded for the one synthetic data set delta. We also note that the largest data
set—rcv1—failed for the majority of algorithms: only the packages sgd and LiblineaR were
able to converge, both of which natively use stochastic gradients for computationally efficient
updates. However, sgd is significantly faster because less overhead seems to be involved in
passing data structures to perform computation in native C++.

Moreover, sgd requires O(p) memory, which is optimal in the sense that O(p) is the minimum
required for simply storing the n'” iterate ™. Both biglm and speedglm require O(p?) for the
inversion of a p X p matrix, as do mnlogit and glm.fit. The mnlogit package also requires data
in the long format, which leads to a duplication of rows, as many entries display redundant
information. Moreover, while exploitation of the Hessian structure can help in practice (as it
outperforms glm.fit), we observe that the traditional technique of Newton-Raphson remains

11
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Data set sgd (A1-sGD) sgd (sGD) biglm speedglm LiblineaR mnlogit glm.fit

covtype  5.21 7.58 - - 1444.78 16.04 40.11
delta 10.10 10.23 736.13 30.50 2167.14 445.73  498.97
revl 14.15 15.42 - - 133.10 -
mnist 3.50 3.37 - - 208.55 232.53  890.76

Table 3: Large-scale logistic regression on four data sets. Timing (in seconds) is displayed,
averaged over 10 runs. Omitted entries indicate failure of the algorithm; for biglm and
speedglm, it could not run due to inversions of singular matrices; for mnlogit it could not run
due to memory limitations.
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Figure 1: Large scale logistic regression on four data sets. Each plot indicates the classifica-
tion error on the test set for explicit sGD with AdaGrad, AI-SGD, averaged SGD, and explicit
SGD over a pass of the data.
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N P sgd (A1-sGD) sgd (SGD) hqreg Units
1,000 100 0.05 0.04 0.03  (sec)
10,000 500 0.55 0.46 0.40 (sec)
10,000 1,000 1.30 2.22 6.34  (sec)
50,000 10,000 3.12 3.86 15.57  (min)
100,000 50,000 8.13 15.20 - (min)
1,000,000 100,000 35.88 51.93 - (min)
10,000,000 100,000 8.64 9.55 - (hr)
100,000 1,000,000 18.80 26.43 - (hr)

Table 4: High-dimensional M-estimation with the Huber loss. Timing (in units given by the
last column) is displayed for 100 X\ values, averaged over 10 runs. Omitted entries indicate
failure of the algorithm; for hqreg, it could not run due to memory limitations.

untenable because it still requires O(Np?) complexity per iteration in the worst case.

For demonstration, Figure 1 shows the progress of multiple SGD algorithms available in sgd (see
Section 4.2) over a pass of the data. We note that AI-SGD achieves the fastest or competitive
convergence rates, without requiring significant tuning of parameters as the other algorithms

do; this includes popular adaptive learning rate specifications, such as explicit SGD with
AdaGrad.

3.3. M-estimation with the Huber loss

We follow an example for high-dimensional M-estimation in Donoho and Montanari (2013,
Section 2.4). Define the convex function p: R — R* to be the Huber loss,

2%/2, if |z] <A,
plesn =2 S
Az| — A°/2, otherwise.

Fix the thresholding parameter A = 3, and generate the N x p design matrix with i.i.d. entries
X, ~ N(0, %) We fix the true set of parameters 6, to be a vector randomly drawn with
fixed norm ||6,[|2 = 6,/p, and then generate outcome y,, n =1,2,..., N, as

Yn =X, 0s + €. (24)

For the distribution of errors €,, we use Huber’s contaminated normal distribution CN(0.05, 10),
i.e., €, ~0.952+0.05h19, i.i.d., where z is standard normal and h, is a point mass at x.

Few alternative packages to sgd exist for high-dimensional robust estimation. We compare to
hgreg (Yi 2015), which fits regularization paths for Huber loss regression with the elastic net
penalty. Note that hqreg is specialized to the Huber loss and cannot perform estimation for
the general setting of M-estimation problems considered here.

Table 4 outlines results for a combination of pairs (N, p), ranging from small problems of
N = 1,000 observations to massive data settings of N = 10 million. We apply the elastic
net penalty with a = 0.5, which puts even weight on both the lasso and ridge components,
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Figure 2: High dimensional M-estimation with the Huber loss, for N = 100, 000 observations,
p = 10,000 covariates, and a fixed regularization parameter A\. The plots indicate the mean-

squared error across iterations (left) and time (right) for sGD algorithms. The horizontal line
displays the mean-squared error for the exact M-estimator 6.

and then compute a regularization path for both packages. We also include an example of
N = 100, 000 observations and p = 1, 000, 000 covariates, where there exist far more covariates
than data points; this occurs often in applications, e.g., in text analysis, bioinformatics, and
signal processing (Lustig, Donoho, Santos, and Pauly 2008; Blei 2012).

The sGD algorithms begin to outperform hqreg on the order of tens of thousands of obser-
vations, and significantly so for larger data settings. Similar to the memory limitations of
glmnet, hqreg requires access to the full data set per iteration of its algorithm, which is in-
feasible when the data cannot be held in memory. Thus we were unable to obtain proper
timings for data sets of size greater than 50,000 observations and 10,000 covariates.

Figure 2 displays the progress of the saD algorithms for the setting of N = 100, 000 observa-
tions and p = 10,000 covariates, for a fixed regularization parameter A. For demonstration,
we run the algorithms over 10 passes of the data and thus over a total of 1 million iterations.
AI-SGD is seen to achieve a significantly faster convergence rate than explicit SGD. We also
consider the use of adaptive schedules, here with RMSProp, as it performs the fastest among
other available learning rates (see Section 4.3). With RMSProp, the difference between the
two methods—sSGD and AI-SGD—is noticeably smaller, and in fact SGD seems to converge
slightly faster. We note however that the use of sGD algorithms with RMSProp breaks sta-
tistical efficiency, and indeed we see this effect as the mean-squared error oscillates around a
value higher than the MSE of the exact M-estimator (green line). Therefore we advocate the
use of AI-SGD with a one-dimensional learning rate, which still converges quite quickly.
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4. Interface and implementation

We now discuss the interface of sgd and various technical details that are important for its
use in practice.

4.1. Interface

The sgd package provides an intuitive and accessible set of methods for performing estimation
with large-scale data sets. At the core of the package is the function

R> sgd(formula, data, model, model.control, sgd.control)

The user provides a formula on the data frame data—similar to function primitives, such as
Im—and then specifies the model. The model parameters are estimated using SGD methods,
which defaults to A1-sGD. The optional arguments model . control and sgd.control specify
attributes one can tweak about the model and the stochastic gradient method, respectively.
For example, given a data frame dat with response vector stored as the column y,

R> sgd(y - ., data=dat, model="1m")

fits a linear model with the default specifications, e.g., AI-SGD with a one-dimensional learning
rate. Similarly,

R> sgd(y ~ ., data=dat, model="glm", model.control=list(family="binomial"))
fits logistic regression with the default specifications. Numerous examples are available in the

package by running demo (package="sgd").

The sgd function also interfaces with data sets that are too large to fit into memory or
are streaming (more details in Section 4.4), and can be run with a custom loss function if
desired.

The output of the sgd function is a sgd object, which is a light wrapper on a 1list which
collects quantities, such as the final parameter estimates and convergence diagnostics. Custom
generic methods are also available for the sgd class, such as print, predict, and plot.

4.2. Stochastic gradient methods

While we describe the explicit SGD and AI-SGD algorithms in Section 2, the following stochastic
gradient methods are also implemented in sgd:

e implicit sGD: Proposed by Toulis et al. (2014) in the context of generalized linear
models, this algorithm uses the implicit update Equation 2 and does not do any iterate
averaging.

e averaged SGD: Proposed by Ruppert (1988) and Bather (1989) independently, this
algorithm uses the explicit update Equation 1 followed by iterate averaging Equation 3.

e classical momentum (CM): Proposed by Polyak (1964), this algorithm uses the update

Up, = pn—1 + an,V10g f(¥n;Xn, On—1), (25)
05, = 0p_1 + Up, (26)
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where p € [0, 1] is a fixed momentum coefficient. ¢M accelerates gradient descent with
a velocity vector which accumulates directions of large increase in the log-likelihood.

e Nesterov’s accelerated gradient (NAG): Proposed by Nesterov (1983), this algorithm
uses the update

Up = WUnp—1 + anV IOg f(YH; Xn, anfl + anfl), (27)
0p = Op—1 + vy, (28)

where p € [0, 1] is a fixed momentum coefficient. NAG is similar to ¢M but accumulates
velocity at a "look-ahead” point 6,1 + puv,—1. This makes a partial update closer to
0,,, allowing NAG to change its velocity more quickly and responsively.

While all these methods are available, we recommend and apply AI-SGD as the default. It can
be seen as an effective combination of the advantages from both implicit SGD and averaged
sGD (Toulis et al. 2015). The momentum-based methods ¢M and NAG enjoy faster convergence
rates than the original explicit SGD, but offer no theoretical benefits against Al-sGD. Without
averaging techniques they also are statistically inefficient, whereas iterate averaging can be
interpreted as an acceleration technique because larger learning rates are used. The velocity
update in NAG is also a proxy for the implicit update, as its benefit mostly relies on making
updates close to where the new estimate would lie.

4.3. Learning rates

We describe the available learning rates in more detail because they are critical for convergence
of SGD methods, in practice. It is well-known (Sakrison 1965; Amari 1998; Toulis et al. 2014)
that explicit SGD Equation 1 and implicit SGD Equation 2 have optimal statistical efficiency
if the learning rate sequence -y, together, with the conditioning matrices C,,, approximate the
inverse Fisher information matrix Z(6,) = —E (V2(0x; X, yn)), i.€., 7nCpn — Z(6,) 7!, in the
limit. Therefore in first-order methods where C),, = I, the learning rate sequence acts as a
scalar-valued approximation to the optimal rescaling as it is used in Fisher scoring (Fisher
1925). Based on this theory, the following learning rates are implemented in sgd:

e One-dimensional (Xu 2011): The learning rate is of the form

Yo = Y0(1 + ayon) ¢,

where ~p,a,c € R are fixed constants. For sGD algorithms without iterate averaging
and sGD algorithms with iterate averaging, Xu (2011) proved that setting ¢ = 1 and
¢ = 2/3, respectively, leads to optimal statistical efficiency; a similar result holds for
AI-SGD (Toulis et al. 2015).

o AdaGrad (Duchi et al. 2011): Rather than specify a one-dimensional learning rate
Yn € R, Duchi et al. (2011) propose a diagonal conditioning matrix C,, € RP*P given by

T = T + diag(Ve(On—1; %, Y0 ) VL On—1; X0, ¥) ),
Cp = (T, + )72,

where diag(-) extracts the diagonal entries of its matrix argument, n € R is a constant, I
is the identity matrix, and e is a fixed value, typically 1079, to prevent division by zero.
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In the limit, I,, is an unbiased estimate of the diagonal entries of the Fisher information,
and the proposed diagonal matrix C),, which accumulates such curvature information,
is proven to be optimal for minimization of the regret bound.

e RMSProp (Tieleman and Hinton 2012): A learning rate which is popular in the deep
learning literature (Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov 2014;
Ranganath, Tang, Charlin, and Blei 2015; Rezende and Mohamed 2015), Tieleman and
Hinton (2012) propose the diagonal conditioning matrix C,, € RP*P given by

T, =BLy1+ (1 - /8) diag(vg(en—ﬁ Xn,y Yn)vg(en—ﬁ Xn, Yn)T)v
Co =Ty + el)~'2,

where 5 € [0,1] is the discount factor, n € R is a constant, I is the identity matrix,
and € is a fixed value to prevent division by zero, as in AdaGrad. RMSProp uses a
decay in the estimate for the Fisher information by taking a weighted average, and
thus it gives more weight onto newer than older information. RMSProp aims to offset
one problem AdaGrad often encounters in practice, where very large values occur for
initial estimates of I, (e.g., due to poor initialization), thus slowing down the AdaGrad
procedure as it tries to accumulate enough curvature information to compensate for such
an error (Schaul, Antonoglou, and Silver 2014). RMSProp balances this by taking a
weighted average of previous and new information, and sees much empirical success. One
problem, however, is that RMSProp is no longer decaying sufficiently quickly (Robbins
and Monro 1951; Duchi et al. 2011), and thus it has no guarantees on convergence.
Moreover, assuming convergence, the limit of the learning rate sequence is a constant,
which makes the iterates jitter around the true parameter value, ad infinitum.

e Fisher: Following results on statistical efficiency and Fisher scoring, we propose a learn-
ing rate using a diagonal conditioning matrix C,, € RP*P given by

I, = (1 - ’Vn)Infl + 'Yndiag(vg(enfl; Xn, Yn)VE(enfl; Xn, Yn)T)7
Cp = (Tn+eI)7L,

where v,, « 1/n, and € is a small fixed value to prevent division by zero, as in AdaGrad.
As before, I, in the limit is an unbiased estimate of the diagonal Fisher information,
and C), is adaptive to curvature information.

One critical but often unnoticed issue with AdaGrad, RMSProp, and similar adaptive sched-
ules is that they are statistically inefficient: the specification of the learning rates leads to
biased estimation of the inverse Fisher information matrix Z(6,)~! that, as mentioned ear-
lier, is necessary for optimal statistical efficiency (an important exception is iterate averaging).
This leads to a suboptimal asymptotic variance for the SGD procedure. Thus we recommend
and apply the last proposed learning rate (“Fisher”) by default: it takes advantage of the
curvature information such methods benefit from, while still preserving as much statistical
efficiency as possible in diagonal conditioning matrices.

4.4. Software integration

For data sets that cannot be loaded into memory, we access subsets of the data using big-
memory (Kane et al. 2013). This allows one to perform stochastic gradient descent by passing
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over the data loaded into RAM, and then to reload a new data set. This naturally applies
to both large data sets, e.g., on the order of dozens of gigabytes, and streaming settings, in
which one has access only to a subset of the (potentially infinite) data at a time.

In principle, with bigmemory the memory requirement for these stochastic gradient methods
is only a single data point and the current parameter estimate, which is the minimum O(p)
complexity for simply storing the estimate. In our implementation we use these savings to
try to load as much data into RAM as possible. This speeds up convergence in practice, as
it reduces the amount of I/O overhead; this especially becomes a significant bottleneck when
reading many objects from disk.

For fast implementations we use Repp (Eddelbuettel and Frangois 2011), where all algo-
rithms are written in C++ and only interface-level code is written in R. Aside from the major
computational gains, this also provides the opportunity to extend the library to other pro-
gramming languages. ReppArmadillo (Eddelbuettel and Sanderson 2014) is applied for access
to pre-optimized linear algebra routines, and BH (Eddelbuettel, Emerson, and Kane 2015) for
access to the Boost libraries. We apply template meta-programming and reusable classes in
an object-oriented framework, including concepts such as stochastic gradient methods, mod-
els, and learning rates. Such concepts make it easy for other users to develop new algorithms
and prototype them in their own research or practices.

The plotting routines adopt many features from ggplot2 (Wickham 2009), and are effectively
templated ggplot objects. Our software is also robust through unit testing which follows the
paradigm from testthat (Wickham 2011).

5. Discussion

As explicit SGD has been used extensively in practice, particularly in the deep learning com-
munity, many heuristics have been proposed to solve issues that often occur. We describe
several of these issues and their proposed solutions in the literature, and compare to how our
sgd package handles them.

Overfitting. As sGD algorithms simply minimize a loss function evaluted over the training
data, overfitting is a prevalent problem as it is for all estimation methods. This is particularly
an issue in complex likelihood functions such as neural networks (see, e.g., Giles (2001); Bakker
and Heskes (2003)). Even with penalization terms that try to offset the fit of the parameters, it
is still difficult for explicit SGD to find the right set of hyperparameters for such regularization
without a computationally intensive search.

As a solution many practictioners adopt early stopping, which simply halts the optimization
routine before it converges. However, there is little theory on the estimates obtained from
early stopping. Most practically, it is difficult to know when to stop the algorithm and how
to use it in combination with other regularization techniques, such as penalization.

Fortunately, one of the advantages of AI-SGD is that it requires less such tweaking: the
implicit update effectively performs a regularization as seen from the Bayesian perspective,
c.f., Section 1. We’ve also seen in practice that penalization terms do not affect the final
estimates from AI-SGD, which makes it less reliant on heuristics, such as early stopping.
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Vanishing or exploding gradients. The numerical instability of explicit SGD is a widespread
issue in practice (Bengio, Simard, and Frasconi 1994; Hochreiter 1998; Hochreiter, Bengio,
Frasconi, and Schmidhuber 2001; Toulis et al. 2014). The stochastic gradients can easily
be too large leading to divergence, and when chained through compositions of functions can
either vanish to zero, or even explode to numerically infinite values; for example, Toulis et al.
(2014) demonstrate the instability of explicit SGD in a simple bivariate Poisson model, where
slight misspecification of learning rate parameters lead to divergence.

Pascanu, Mikolov, and Bengio (2012) propose gradient clipping, which simply thresholds the
stochastic gradient if it is outside a bounded interval. Unfortunately, while it can work in
practice, it is a heuristic that breaks the key assumptions for convergence rate guarantees on
SGD algorithms. Similarly, there is no principled way to set the bounds. For A1-SGD algorithms
applied to the settings we consider in Section 2, such an issue never arises. Theoretical results
establish stability regardless of the specification of the learning rate (Toulis and Airoldi 2015a,
Section 3), and perform well in practice, as seen in Section 3.

6. Concluding remarks

The sgd package is the most extensive implementation in R of stochastic gradient methods
for estimation with massive and/or streaming data sets. Thus, sgd broadens the capabilities
of R for estimation with modern large data sets—on the orders of hundreds of millions of
observations and hundreds of thousands of covariates—while retaining desirable statistical
properties. The software is based on solid theory of stochastic approximations, which help
guide the optimal selection of parameters, e.g., learning rates, in the underlying optimiza-
tion routines. In this paper, we show how sgd can be applied for estimation of generalized
linear models and M-estimation, which comprise a sizeable portion of estimation problems
encountered in statistical practice.

There are many software extensions that are currently in development. We are working
to interface with other high-performance computing packages, namely sqldf for faster I/0O
applications with streaming data, doParallel (Analytics and Weston 2014) and Rmpi (Yu
2002) for parallel updates across environments, and gputools (Buckner, Seligman, and Wilson
2011) for efficient computing with GPUs. The algorithms described here directly appeal
to asynchronous implementations, following Hogwild! (Nui, Recht, Re, and Wright 2011),
which allows for lock-free allocation of CPU cores. Sparse data structures would allow for
fast structured matrix and vector products, which occur, for example, when looping over
the covariates of a data point, and would significantly speed up computation on sparse data
sets.

Finally, there has been little attention on, and in fact a pressing need for, model selection

and hypothesis testing in SGD procedures. We are pursuing this in light of the new statistical
challenges presented to us while developing the sgd package.
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