
The GETOPTK package

Michael Le Barbier Grünewald

6th of June 2011

Abstract

The getoptk package eases the definition of macros accepting optional
arguments in the same style as \hrule or \hbox. It is meant to be used
with plain TEX.

1 Introduction

A flexible way to pass optional arguments to a procedure is to rely on dictionaries
of optional arguments, that is, a set of bindings between formal names of
arguments and their values. Some TEX primitives, like \hrule or \hbox, use
such an interface style. We call this style the keyword interface style. There is
no facility in TEX to define new macros using the keyword interface style. The
getoptk package provides such a service.

2 Quick guide

In order to define a macro using the keyword interface style, we have to setup first
a behaviour dictionary binding keywords and behaviours. A keyword introduces
an optional argument and a behaviour describes its effect, we will soon show
an example of this. In the definition of the macro itself, we first select the
behaviour dictionary we want to use and call \getoptk, the control sequence
responsible of the detection of optional arguments. In this call, we need to
provide a callback as argument to \getoptk, this callback is a macro taking
control of the execution after \getoptk has completed its task. It will be called
with an argument, that is derived from the list of optional arguments.

For explanatory purposes, let us assume that we want to define a macro
\begindisplay using the keyword interface style and accepting the following
optional arguments:

ragged Fill, but do not adjust the right margin (only left-justify).

literal Display block with literal font (usually fixed-width). Useful for source
code or simple tabbed or spaced text.

1



file 〈file name〉 The file whose name, enclosed in curly braces, follows the file
keyword is read and displayed using the selected display type.

offset 〈dimen〉 Use dimen as indentation for the display.

We first create a fresh new behaviour dictionary:

\newgetoptkdictionary{display}

and fill it with behaviours:

\defgetoptkflag{ragged}{\raggedright}
\defgetoptkflag{literal}{\let\displayfont\literalfont}
\defgetoptktoks{file}{\input #1}
\defgetoptkdimen{dimen}{\displayindent=#1\relax}

Besides registering the behaviours in the dictionary display, these commands
also bind the behaviours to the following control sequences:

\getoptk@behaviour@display@ragged
\getoptk@behaviour@display@literal
\getoptk@behaviour@display@file
\getoptk@behaviour@display@dimen

The control sequences created with \getoptkflag must do not have an ar-
gument, while those created by \getoptktoks or \getoptkdimen do have
one. The definition of \begindisplay is

\def\begindisplay{%
\setgetoptkdictionary{display}%
\getoptk\display@M

}

The control sequence \getoptk is such that the input text

\begindisplay file {chapter1} literal offset 20pt

is replaced by

\display@M{%
\getoptk@behaviour@display@file{chapter1}%
\getoptk@behaviour@display@literal
\getoptk@behaviour@display@dimen{20pt}%

}

so that \display@M can do its job and trigger the behaviours at the appropriate
time.

2



3 Defining a behaviour dictionary

The command \newgetoptkdictionary〈dictionary〉 creates a behaviour dic-
tionary that will be filled by subsequent calls to commands binding keywords
and behaviours. The bindings commands are:

\defgetoptkflag
\defgetoptkcount
\defgetoptkdimen
\defgetoptkskip
\defgetoptktoks
\defgetoptkbracket

They all must be called like in the previous examples, following the pattern:

〈binding_command〉〈keyword〉〈behaviour〉

defgetoptkflag The 〈behaviour〉 is the replacement text of a macro without ar-
guments. When it finds 〈keyword〉, the \getoptk macro does not look for
an argument but starts again scanning for keywords.

defgetoptkcount The 〈behaviour〉 is the replacement text of a macro having one
argument. When it finds 〈keyword〉, the \getoptk macro scans further
for an argument that is valid right hand side value for a count register.
This argument will be supplied to the 〈behaviour〉 when behaviours are
triggered.

defgetoptkdimen The 〈behaviour〉 is the replacement text of a macro having one
argument. When it finds 〈keyword〉, the \getoptk macro scans further
for an argument that is valid right hand side value for a dimen register.
This argument will be supplied to the 〈behaviour〉 when behaviours are
triggered.

defgetoptkskip The 〈behaviour〉 is the replacement text of a macro having one
argument. When it finds 〈keyword〉, the \getoptk macro scans further
for an argument that is valid right hand side value for a skip register.
This argument will be supplied to the 〈behaviour〉 when behaviours are
triggered.

defgetoptktoks The 〈behaviour〉 is the replacement text of a macro having one
argument. When it finds 〈keyword〉, the \getoptk macro scans further
for an argument that is valid right hand side value for a toks register.
This argument will be supplied to the 〈behaviour〉 when behaviours are
triggered.

defgetoptkbracket The 〈behaviour〉 is the replacement text of a macro having
one argument. When it finds 〈keyword〉, the \getoptk macro scans fur-
ther for an optional argument enclosed by square brackets. If such an argu-
ment is found, it is supplied to 〈behaviour〉 when behaviours are triggered

3



and the predicate \ifgetoptkbracket is bound to \iftrue. If no such
an argument is found, then the empty argument is supplied to 〈behaviour〉
when behaviours are triggered and the predicate \ifgetoptkbracket
is bound to \iffalse.

4 Licence

The getoptk software id copyright c© 2011 Michael Le Barbier Grünewald. The
getoptk software is distributed under the terms of the CeCILL-B licence, ver-
sion 1.0. See the files COPYING and COPYING-FR in the distribution.

4


	Introduction
	Quick guide
	Defining a behaviour dictionary
	Licence

