pyecm_wrapper Namespace Reference


Functions

def dict_from_list
def sgmftr
def factors_as_dict
def factors_as_dict_of_numbers
def print_factors
def print_sgmftr
def time_sgmftr
def do_test
def do_time
def do_args

Variables

tuple argc = len( sys.argv )

Function Documentation

def pyecm_wrapper::dict_from_list (   list  ) 

Definition at line 13 of file pyecm_wrapper.py.

00013                           :
00014 
00015     for prime in list:
00016         power = result.get( prime, 0 ) +  1
00017         result[ prime ] = power
00018     return result
00019 
def sgmftr( p, q ):

def pyecm_wrapper::do_args (  ) 

Definition at line 127 of file pyecm_wrapper.py.

00127               :
00128 
00129     for i in range( 1, len( sys.argv ) / 2 ):
00130         p = int( sys.argv[ i * 2 ] )
00131         q = int( sys.argv[ i * 2 + 1 ] )
00132         
00133         print_sgmftr( p, q )
00134 
if __name__ == '__main__':

def pyecm_wrapper::do_test (  ) 

Definition at line 103 of file pyecm_wrapper.py.

00103               :
00104 
00105     if argc < 3:
00106         min = 2
00107         max = 200
00108     else:
00109         min = int( sys.argv[ 2 ] )
00110         max = int( sys.argv[ 3 ] )
00111     
00112     for q in range( min, max ) :
00113         print_sgmftr( 2, q )
00114 
def do_time( ):

def pyecm_wrapper::do_time (  ) 

Definition at line 115 of file pyecm_wrapper.py.

00115               :
00116 
00117     if argc < 3:
00118         min = 2
00119         max = 200
00120     else:
00121         min = int( sys.argv[ 2 ] )
00122         max = int( sys.argv[ 3 ] )
00123     
00124     for q in range( min, max ) :
00125         time_sgmftr( 2, q )
00126 
def do_args( ):

def pyecm_wrapper::factors_as_dict (   n  ) 

Definition at line 24 of file pyecm_wrapper.py.

00024                         :
00025     ra = veb = False
00026     pr = 1.0
00027 
00028     ov = 2*math.log(math.log(n))
00029 
00030     result = { } # dict
00031     for factor in pyecm.factors(n, veb, ra, ov, pr):
00032         power = result.get( factor, 0 ) +  1
00033         result[ factor ] = power
00034 
00035     return result
00036 
def factors_as_dict_of_numbers( n ):

def pyecm_wrapper::factors_as_dict_of_numbers (   n  ) 

Definition at line 37 of file pyecm_wrapper.py.

00037                                    :
00038     ra = veb = False
00039     pr = 1.0
00040 
00041     ov = 2*math.log(math.log(n))
00042 
00043     result = { } # dict
00044     for factor in pyecm.factors(n, veb, ra, ov, pr):
00045         if not result.has_key( factor ):
00046             power = 1
00047         else:
00048             power = result[ factor ].power( ) +  1
00049         result[ factor ] = Number.Number( factor, power )
00050 
00051     return result
00052 
def print_factors( p, q, factors ):

def pyecm_wrapper::print_factors (   p,
  q,
  factors 
)

Definition at line 53 of file pyecm_wrapper.py.

00053                                   :
00054     print "%d  %d " % ( p, q ),
00055     print "(",
00056     keys = factors.keys( )
00057     keys.sort( )
00058     for p in keys:
00059         q = factors [ p ]
00060         print "%s^%s" % (p, q) ,
00061     print ")"
00062 
def print_sgmftr( p, q ):

def pyecm_wrapper::print_sgmftr (   p,
  q 
)

print start time & sgmftr( p, q )
print finish time & factors

Definition at line 63 of file pyecm_wrapper.py.

00063                         :
00064     '''
00065     print start time & sgmftr( p, q )
00066     print finish time & factors
00067     '''
00068 
00069     n = sgmftr( p, q )
00070 
00071     s = TimeStamp.TimeStamp( )
00072     print "%s    %d  %d  %e  %d" % ( s, 2, q, n * 1.0, n )
00073     sys.stdout.flush( )
00074 
00075     factors = factors_as_dict( n )
00076 
00077     s = TimeStamp.TimeStamp( )
00078     print "%s   " % s,
00079     print_factors( 2, q, factors )
00080     sys.stdout.flush( )
00081 
def time_sgmftr( p, q ):

def pyecm_wrapper::sgmftr (   p,
  q 
)

Definition at line 20 of file pyecm_wrapper.py.

00020                   :
00021     result = ( p ** ( q + 1 ) - 1 ) / ( p - 1 )
00022     return result
00023 
def factors_as_dict( n ):

def pyecm_wrapper::time_sgmftr (   p,
  q 
)

print start time & sgmftr( p, q )
print elapsed time & factors

Definition at line 82 of file pyecm_wrapper.py.

00082                        :
00083     '''
00084     print start time & sgmftr( p, q )
00085     print elapsed time & factors
00086     '''
00087 
00088     n = sgmftr( p, q )
00089 
00090     b = time.time( )
00091     t = hhmmss( time.localtime( b ) )
00092     print "%s    %d  %d  %e  %d" % ( t, 2, q, n * 1.0, n )
00093     sys.stdout.flush( )
00094 
00095     factors = factors_as_dict( n )
00096 
00097     f = time.time( )
00098     t = hhmmss( f -  b )
00099     print "%s   " % t,
00100     print_factors( 2, q, factors )
00101     sys.stdout.flush( )
00102 
def do_test( ):


Variable Documentation

tuple pyecm_wrapper::argc = len( sys.argv )

Definition at line 136 of file pyecm_wrapper.py.


Generated on Sun Mar 22 09:59:14 2009 for Multiperfect Number Generator by  doxygen 1.5.8