Udox

Manual for version 1.8.10.1

o WY

Written by Dimitri van Heesch

©1997-2015

Contents

|
1

2

2.1
2.2
2.3
2.4

3

3.1
3.2
3.3

3.4

4
41

4.2

5
5.1

User Manual
Introduction

Installation
Compiling fromsource on UNIX L
Installing the binarieson UNIX L o e
Compiling from source on Windows L
Installing the binarieson Windows e

Getting Started

Step 0: Check if doxygen supports your programming language
Step 1: Creating a configurationfile L
Step 2: Running doxygen e e
3.3.1 HTMLoutput o e e e e
3.3.2 LaTeXoutput e
3.3.3 RTFoutput e e
3.34 XMLoutput e e e
3.3.5 Manpageoutput L
3.3.6 DocBookoutput e e e e
Step 3: Documentingthe sources L

Documenting the code

Special commentblocks L
4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)

Putting documentation aftermemberso oL

Examples e

Documentation at otherplaces oL
4.1.2 CommentblocksinPython
413 Commentblocksin VHDL e
414 CommentblocksinFortran e
415 CommentblocksinTcl e
Anatomy of acommentblock

Markdown

Standard Markdown L e
5.1.1 Paragraphs L e e e
5.1.2 Headers e e e
5.1.3 Blockquotes e e e e
5.1.4 Lists e e
515 CodeBlocks L e e e
5.1.6 Horizontal Rulers e
5.1.7 Emphasis e e e
5.1.8 €OAESPANS e e e e e e e e
5.1.9 LinKS e e e

Inline Links L e

Reference Links e

5110 Images e e e

© 0 0 N N

11

12
13
13
13
14
14
14
14
14

17
17
17
19
20
22
24
25
25
26
27

] CONTENTS

5.1.11 AutomaticLinking e 32

5.2 Markdown Extensions L L e e e 32
521 TableofContents e e e e 32

522 Tables e 32

523 FencedCodeBlocks e 33

5.2.4 HeaderId Attributes L 34

5.3 Doxygen specifics 34
5.3.1 Including Markdown filesaspages 34

5.3.2 Treatmentof HTML blocks 34

5.83.3 Code Block Indentation 35

5.83.4 Emphasislimits e 35

5.3.5 Code SpansLimits 35

5.3.6 ListsExtensions 36

5.83.7 Useofasterisks e 36

5.3.8 Limitsonmarkup scope e e e e e 36

54 Debugging of problems L e 37
6 Lists 39
7 Grouping 41
71 Modules e e e 41
7.2 MemberGroups o e e e e 43
7.3 Subpaging e 44
8 Including Formulas 47
9 Graphs and diagrams 49
10 Preprocessing 51
11 Automatic link generation 55
11.1 Linkstoweb pagesand mailaddresses 55
11.2 Linkstoclasses e e 55
11.3 Linkstofiles e 55
11.4 Linkstofunctions e 55
11.5 Linkstoothermembers L 56
11.6 typedefs 58
12 Output Formats 59
13 Searching 61
13.1 External Indexing and Searching 63
13.1.1 Introduction 63

13.1.2 Configuring e e 64

Single projectindex L 64
Multiprojectindex e 64

13.1.3 Updatingtheindex 65

13.1.4 Programminginterface L 65
Indexerinputformat 65

Search URLformat e e 66
Searchresultsformat 66

14 Customizing the Output 69
141 MinorTweaks e e 69
14.1.1 Overall Color o 69

14.1.2 Navigation o e e e e 69

14.1.3 Dynamic Content L e e 70
14.1.4 Header, Footer, and Stylesheetchanges, 70

142 Changing the layoutofpages e 71
14.3 Usingthe XML output L o 73

Generated by Doxygen 1.8.10.1

CONTENTS 1]

15 Custom Commands 75
15.1 Simple aliases e 75
15.2 Aliases witharguments e 75
15.3 Nestingcustomcommand L e 76
16 Link to external documentation 77
17 Frequently Asked Questions 79
17.1 How to get information on the index page in HTML? 79
17.2 Help, some/all of the members of my class / file / namespace are not documented? 79
17.3 When | set EXTRACT_ALL to NO none of my functions are shown in the documentation. 79
17.4 My file with a custom extension is not parsed (properly) (anymore). 80
17.5 How can | make doxygen ignore some code fragment? oL 80
17.6 How can | change what is after the <code>#include</code> in the class documentation? 80
17.7 How can | use tag files in combination with compressed HTML? 81
17.8 I don't like the quick index that is put above each HTML page, whatdo Ido? 81
17.9 The overall HTML output looks different, while | only wanted to use my own html header file 81
17.10 Why does doxygenuse Qt? e 81
17.11 How can | exclude all test directories from my directory tree? 81
17.12 Doxygen automatically generates a link to the class MyClass somewhere in the running text. How do |
prevent that at a certain place? e 81
17.13 My favorite programming language is X. Can I stilluse doxygen? 82
17.14 Help! | get the cryptic message "input buffer overflow, can't enlarge buffer because scanner uses
REJECT . . . e 82
17.15 When running make in the latex dir | get "TeX capacity exceeded". Now what? 82
17.16 Why are dependencies via STL classes not shown in the dotgraphs? 82
17.17 | have problems getting the search engine to work with PHP5 and/or windows 82
17.18 Can | configure doxygen from the command line?, 82
17.19 How did doxygen getits name? e 83
17.20 What was the reason to develop doxygen? 83
18 Troubleshooting 85
18.1 Known Problems 85
18.2 HowtoHelp o e 86
18.3 Howtoreportabug e 86
Il Reference Manual 87
19 Features 89
20 Doxygen usage 91
20.1 Fine-tuningthe output L L 91
21 Doxywizard usage 93
22 Configuration 99
22,1 Format e e 99
22.2 Project related configurationoptions 101
22.3 Build related configurationoptions 105
22.4 Configuration options related to warning and progress messageso ... 109
22.5 Configuration options related to the inputfiles Lo o 110
22.6 Configuration options related to source browsingo Lo 111
22.7 Configuration options related to the alphabetical classindex 113
22.8 Configuration options related to the HTML output 113
22.9 Configuration options related to the LaTeX output oL 121
22.10 Configuration options related tothe RTFoutput 123
22.11 Configuration options related to the manpageoutput L. 124
22.12 Configuration options related to the XML outputo 125
22.13 Configuration options related to the DOCBOOK output 125

Generated by Doxygen 1.8.10.1

v

CONTENTS

22.14 Configuration options for the AutoGen Definitions output
22.15 Configuration options related to the Perl module output
22.16 Configuration options related to the preprocessor
22.17 Configuration options related to external references
22.18 Configuration options related to the dot tool

2219 Examples
23 Special Commands

23.1 Introduction
23.2 \addtogroup <name> [(title)]

23.3 \callgraph oo
23.4 \hidecallgraph
23.5 \callergraph

23.6 \hidecallergraph

23.7 \category <name> [<header-file>] [<header-name>]
23.8 \class <name> [<header-file>>] [<header-name>>]
23.9 \def<name>

23.10 \defgroup <name> (group title)
23.11 \dir [<path fragment>]

23.12 \enum <name>

23.13 \example <file-name>
23.14 \endinternal
23.15 \extends <name>
23.16 Mile[<name>]
23.17 \fn (function declaration)
23.18 \headerfile <header-file> [<header-name>]
23.19 \hideinitializer 0oL
23.20 \idlexcept <name>
23.21 \implements <name>
23.22 \ingroup (<groupname> [<groupname> <groupname>])
23.23 \interface <name> [<header-file>] [<header-name>]
2324 \internalo

23.25 \mainpage [(title)]

23.26 \memberof <name>

23.27 \name [(header)]

23.28 \namespace <name>

23.29 \nosubgrouping

23.30 \overload [(function declaration)]
23.31 \package <name>

23.32 \page <name> (title)
23.33 \private
23.34 \privatesection
23.35 \property (qualified property name)
23.36 \protected

23.37 \protectedsection

23.38 \protocol <name> [<header-file>] [<header-name>]
23.39 \public
23.40 \publicsection
2341 \pure

23.42 \relates <name>
23.43 \related <name>

23.44 \relatesalso <name>
23.45 \relatedalso <name>
23.46 \showinitializer

23.47 \static. o

23.48 \struct <name> [<header-file>>] [<header-name>]
23.49 \typedef (typedef declaration)
23.50 \union <name> [<header-file>] [<header-name>]

Generated by Doxygen 1.8.10.1

CONTENTS Vv

23.51 \var (variable declaration) 146
23.52 \vhdIflow [(title for the flow chart)] Lo 147
23.53 \weakgroup <name> [(title)] 147
23.54 \attention { attentiontext} 147
23.55 \author {listof authors} 147
23.56 \authors{listof authors} 147
23.57 \brief { briefdescription} L 147
23.58 \bug {bugdescription} 148
23.59 \cond [(section-label)] L 148
23.60 \copyright { copyright description} L 149
23.61 \date {datedescription} L 149
23.62 \deprecated { description} L 149
23.63 \details { detailed description} 149
23.64 \else 149
23.65 \elseif (section-label) L 149
23.66 \endcond 149
23.67 \endif e 150
23.68 \exception <exception-object> { exception description}o oL 150
23.69 \if (section-label) 150
23.70 \ifnot (section-label) e 151
23.71 \invariant { description of invariant} L L 151
23.72 \note {text} 151
23.73 \par [(paragraph title)] { paragraph '} 151
23.74 \param [(dir)] <parameter-name> { parameter description} oL 152
23.75 \parblock 152
23.76 \endparblock L e 152
23.77 \tparam <template-parameter-name> { description}o 152
23.78 \post { description of the postcondition} 153
23.79 \pre { description of the precondition} L 153
23.80 \remark {remarktext} L 153
23.81 \remarks {remarktext} L 153
23.82 \result { description of the resultvalue} L 153
23.83 \return { description of the returnvalue} L 153
23.84 \returns { description of thereturnvalue} 153
23.85 \retval <returnvalue> { description} 153
23.86 \sa{references} 154
23.87 \see{references} 154
23.88 \short{shortdescription} 154
23.89 \since {text} 154
23.90 \test { paragraph describingatestcase} L 154
23.91 \throw <exception-object> { exception description}o 154
23.92 \throws <exception-object> { exception description}o 154
23.93 \todo { paragraph describing whatistobedone}o 154
23.94 \version {versionnumber} L 155
23.95 \warning {warningmessage } e 155
23.96 \xrefitem <key> "(heading)" "(list title)" {text}o 155
23.97 \addindex (text) e e 155
23.98 \anchor <word> L L e 156
23.99 \cite <label> e 156
23.100\endlink L L e 156
23.101\link <link-object> e e 156
23.102\ref <name> ["(text)"] e 156
23.108\refitem <name> 156
23.104\secreflist 157
23.105\endsecreflist L 157
23.106\subpage <name> ["(text)"] 157
23.107\tableofcontents L. 157
23.108\section <section-name> (sectiontitle) o Lo 157

Generated by Doxygen 1.8.10.1

Vi CONTENTS

23.109\subsection <subsection-name> (subsectiontitle) oL oL 158
23.110\subsubsection <subsubsection-name> (subsubsectiontitle) 158
23.111\paragraph <paragraph-name> (paragraphftitle) 158
23.112\dontinclude <file-name> L L e 158
23.113\include <file-name> L 159
23.114\includelineno <file-name> L L 159
23.115\line (pattern) L e 160
23.116\skip (pattern) L e 160
23.117\skipline (pattern) e 160
23.118\snippet <file-name> (block_id) 160
23.119\until (pattern) L e 161
23.120\verbinclude <file-name> L L 161
23.121\htmlinclude <file-name> L e 161
23.122\latexinclude <file-name> L 161
23.123\a <word> . . L L L e e e 161
23.124\arg { item-description } L e 161
23.125\b <word> . . L L L L e 162
23.126\C <WOrd>> L e e 162
23.127\code ['{'<word>"Y] L e 162
23.128\copydoc <link-object> L 163
23.129\copybrief <link-object> L 163
23.130\copydetails <link-object> 163
23.131\docbookonly L e e 164
23.132\dot ["caption"] [<sizeindication>=<size>]o 164
23.133\msc ["caption"] [<sizeindication>=<size>]o 164
23.134\startuml [{file}] ["caption"] [<sizeindication>=<size>]o 165
23.135\doffile <file> ["caption"] [<sizeindication>=<size>] 166
23.136\mscfile <file> ["caption"] [<sizeindication>=<size>] 166
23.137\diafile <file> ["caption"] [<sizeindication>=<size>]o 0oL 166
23.138\e <word> . . . L L L e e e e 166
23.139\em <WOrd>> . . L L L e e e 167
23.140\endcode L e 167
23.141\enddocbookonly 167
23.142\enddot . . . L L L 167
23.143\endmMSC e e e 167
23.144\enduml . L L L L 167
23.145\endhtmlonly L L e 167
23.146\endlatexonlyo L L e e 168
23.147\endmanonly L L e e e 168
23.148\endrtfonly L e e 168
23.149\endverbatim L L e 168
23.150\endxmlonly L L e 168
28 A51NME . 168
28152\ . . e e 168
28188\ . 169
23.154\Henvironment}{ L L L 169
281850\ . 169
23.156\htmlonly ["[block]"] 169
23.157\image <format> <file> ["caption"] [<sizeindication>=<size>] 169
23.158\atexonlyo e 170
23.159\manonly e 170
23.160\li { item-description } 170
28.1B1NN . . e 171
23.162\D <CWOKA>> . L . o o o e e e e e e 171
23.163\rtfonly . . . L e 171
23.164\verbatim L e 171
23.165\xmlonly . . .o e 172
23166\ . . 172

Generated by Doxygen 1.8.10.1

CONTENTS Vi
23167\@ . . . 172
23.168\~[Languageld] e 172
28.1B9\& . . . e 172
2817008 . . L 172
2B A7TME . L 172
2872\ L 172
23.173\> L 173
23174\% . . 173
28175\ e 173
28476\, . e 173
28477\ 173
23478\ . e 173
281700\ . 173
28180\ . L e 173
24 HTML commands 175
25 XML commands 185
Il Developers Manual 187
26 Doxygen’s internals 189
27 Perl Module Output format 193
271 USAQE 193
27.2 Usingthe LaTeX generator. o o i i e 193

27.2.1 Creationof PDFand DVloutput 194
27.3 Documentationformat. L 194
27.4 Datastructure L e 195
28 Internationalization 197

Generated by Doxygen 1.8.10.1

Part |

User Manual

Chapter 1

Introduction

Introduction

Doxygen is the de facto standard tool for generating documentation from annotated C++ sources, but it also supports
other popular programming languages such as C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft, and
UNO/OpenOffice flavors), Fortran, VHDL, Tcl, and to some extent D.

Doxygen can help you in three ways:

1.

It can generate an on-line documentation browser (in HTML) and/or an off-line reference manual (in IATEX)
from a set of documented source files. There is also support for generating output in RTF (MS-Word), Post«
Script, hyperlinked PDF, compressed HTML, and Unix man pages. The documentation is extracted directly
from the sources, which makes it much easier to keep the documentation consistent with the source code.

. You can configure doxygen to extract the code structure from undocumented source files. This is very useful

to quickly find your way in large source distributions. Doxygen can also visualize the relations between the
various elements by means of include dependency graphs, inheritance diagrams, and collaboration diagrams,
which are all generated automatically.

. You can also use doxygen for creating normal documentation (as | did for the doxygen user manual and

web-site).

Doxygen is developed under Mac OS X and Linux, but is set-up to be highly portable. As a result, it runs on
most other Unix flavors as well. Furthermore, executables for Windows are available.

This manual is divided into three parts, each of which is divided into several sections.
The first part forms a user manual:

Section Installation discusses how to download, compile and install doxygen for your platform.

Section Getting started tells you how to generate your first piece of documentation quickly.

Section Documenting the code demonstrates the various ways that code can be documented.

Section Markdown support show the Markdown formatting supported by doxygen.

Section Lists shows how to create lists.

Section Grouping shows how to group things together.

Section Including formulas shows how to insert formulas in the documentation.

Section Graphs and diagrams describes the diagrams and graphs that doxygen can generate.

Section Preprocessing explains how doxygen deals with macro definitions.

Section Automatic link generation shows how to put links to files, classes, and members in the documentation.

Section Output Formats shows how to generate the various output formats supported by doxygen.

http://www.doxygen.org/download.html

4 Introduction

 Section Searching shows various ways to search in the HTML documentation.

« Section External Indexing and Searching shows how use the external search and index tools

+ Section Customizing the output explains how you can customize the output generated by doxygen.
+ Section Custom Commands show how to define and use custom commands in your comments.

+ Section Linking to external documentation explains how to let doxygen create links to externally generated
documentation.

+ Section Frequently Asked Questions gives answers to frequently asked questions.
» Section Troubleshooting tells you what to do when you have problems.

The second part forms a reference manual:

+ Section Features presents an overview of what doxygen can do.

+ Section Doxygen usage shows how to use the doxygen program.

 Section Doxywizard usage shows how to use the doxywizard program.

« Section Configuration shows how to fine-tune doxygen, so it generates the documentation you want.

+ Section Special Commands shows an overview of the special commands that can be used within the docu-
mentation.

« Section HTML Commands shows an overview of the HTML commands that can be used within the documen-
tation.

» Section XML Commands shows an overview of the C# style XML commands that can be used within the
documentation.

The third part provides information for developers:

+ Section Doxygen's Internals gives a global overview of how doxygen is internally structured.
+ Section Perl Module Output shows how to use the PerlMod output.

« Section Internationalization explains how to add support for new output languages.

Doxygen license

Copyright © 1997-2015 by Dimitri van Heesch.

Permission to use, copy, modify, and distribute this software and its documentation under the terms of the GNU
General Public License is hereby granted. No representations are made about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty. See the GNU General Public License
for more details.

Documents produced by doxygen are derivative works derived from the input used in their production; they are
not affected by this license.

User examples

Doxygen supports a number of output formats where HTML is the most popular one. I've gathered some nice
examples of real-life projects using doxygen.

These are part of a larger 1ist of projects that use doxygen. If you know other projects, let me know
and I'll add them.

Generated by Doxygen 1.8.10.1

mailto:dimitri@stack.nl
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.doxygen.org/results.html
http://www.doxygen.org/results.html
http://www.doxygen.org/projects.html
mailto:dimitri@stack.nl?subject=New%20project%20using%20Doxygen

Future work

Although doxygen is successfully used by large number of companies and open source projects already, there is
always room for improvement.

You can submit enhancement requests in the bug tracker. Make sure the severity of the bug report is
set to "enhancement".

Acknowledgments

Thanks go to:

Malte Zdckler and Roland Wunderling, authors of DOC++. The first version of doxygen borrowed some code
of an old version of DOC++. Although | have rewritten practically all code since then, DOC++ has still given
me a good start in writing doxygen.

All people at Qt Software, for creating a beautiful GUI Toolkit (which is very useful as a Windows/Unix platform
abstraction layer :-)

My brother Frank for rendering the logos.

Harm van der Heijden for adding HTML help support.

Wouter Slegers of Your Creative Solutions for registering the www.doxygen.org domain.
Parker Waechter for adding the RTF output generator.

Joerg Baumann, for adding conditional documentation blocks, PDF links, and the configuration generator.
Tim Mensch for adding the todo command.

Christian Hammond for redesigning the web-site.

Ken Wong for providing the HTML tree view code.

Talin for adding support for C# style comments with XML markup.

Petr Prikryl for coordinating the internationalization support. All language maintainers for providing transla-
tions into many languages.

The band Porcupine Tree for providing hours of great music to listen to while coding.

many, many others for suggestions, patches and bug reports.

Generated by Doxygen 1.8.10.1

https://bugzilla.gnome.org/buglist.cgi?product=doxygen&bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&bug_severity=enhancement
http://www.yourcreativesolutions.nl
http://www.porcupinetree.com

Introduction

Generated by Doxygen 1.8.10.1

Chapter 2

Installation

First go to the down1oad page to get the latest distribution, if you have not downloaded doxygen already.

2.1

Compiling from source on UNIX

If you downloaded the source distribution, you need at least the following to build the executable:

The GNU tools flex, bison, l1ibiconv and GNU make, and strip

In order to generate a Make file for your platform, you need cmake version 2.8.12 or later.

To take full advantage of doxygen's features the following additional tools should be installed.

Qt Software's GUI toolkit Ot version 4.3 or higher (but currently, Qt 5.x is not yet supported). This is needed
to build the GUI front-end doxywizard.

A IATEX distribution: for instance TeX Live This is needed for generating IATEX, Postscript, and PDF output.

the Graph visualization toolkit version 1.8.10 or higher Needed for the include
dependency graphs, the graphical inheritance graphs, and the collaboration graphs. If you compile graphviz
yourself, make sure you do include freetype support (which requires the freetype library and header files),
otherwise the graphs will not render proper text labels.

For formulas in the HTML output (when MathJax is not used) or in case you do not wish to use ‘pdflatex, the
ghostscript interpreter is needed. You can find it at www . ghostscript.com.

Compilation is now done by performing the following steps:

1.

Unpack the archive, unless you already have done that:

gunzip doxygen—-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

Create a build directory (for instance inside the source tree)

cd doxygen—-$VERSION
mkdir build

Run cmake with the makefile generator

cmake -G "Unix Makefiles" ..

cmake tries to determine the platform you use, and will look for the requires tools. It will report if something
is missing.
If you have Qt-4.3 or higher installed and want to build the GUI front-end, you should enable it as follows:

cmake -Dbuild_wizard=YES

For an overview of other configuration options use

http://www.doxygen.org/download.html
ftp://prep.ai.mit.edu/pub/gnu/
http://www.cmake.org/
http://qt-project.org/
http://www.tug.org/interest.html#free
http://www.graphviz.org/
http://www.ghostscript.com/

8 Installation

cmake -L
4. Compile the program by running make:

make

The program should compile without problems and the binaries (doxygen and optionally doxywizard)
should be available in the bin directory within the build directory.

5. Optional: Generate the user manual.

cmake -Dbuild_doc=YES
make docs

To let doxygen generate the HTML and PDF documentation.

The HTML directory within the build directory will now contain the html documentation (just point a HTML
browser to the file index.html in the html directory).

2.2 Installing the binaries on UNIX

After the compilation of the source code do a make install to install doxygen. If you downloaded the binary
distribution for UNIX, type:

./configure
make install

Binaries are installed into the directory <prefix>/bin. Use make install_docs to install the docu-
mentation and examples into <docdir>/doxygen.

<prefix> defaults to /usr/local but can be changed with the ——prefix option of the configure
script. The default <docdir> directory is <prefix>/share/doc/packages and can be changed with
the ——docdi r option of the configure script.

Alternatively, you can also copy the binaries from the bin directory manually to some bin directory in your
search path. This is sufficient to use doxygen.

Note

You need the GNU install tool for this to work (it is part of the coreutils package). Other install tools may put
the binaries in the wrong directory!

If you have a RPM or DEP package, then please follow the standard installation procedure that is required for these
packages.

2.3 Compiling from source on Windows

From version 1.8.10 onwards, build files need to be generated by cmake. cmake can be downloaded from http«
://www.cmake.org/download/

At the moment only the express version of Visual Studio 2013 is tested, but other version might also work.

Alternatively, you can compile doxygen the UNIX way using Cygwin or MinGW.

The next step is to install modern versions of bison and flex (see http://sourceforge.«
net/projects/winflexbison. After installation and adding them to your path rename win_flex.exe
to flex.exe and win_bison.exe to bison.exe) Furthermore you have to install python (version 2.6 or
higher, see http://www.python.org). These packages are needed during the compilation process.

Download doxygen's source tarball and put it somewhere (e.g. use c: \tools)
Now start a visual studio native command shell (for either x86 or x64) and type

cd c:\tools
tar zxvf doxygen-x.y.z.src.tar.gz

to unpack the sources (you can obtain tar frome.g. http://gnuwin32.sourceforge.net /packages.«
html). Alternatively you can use an unpack program, like 7-Zip (see http://www.7—-z1ip.org) or use the
build in unpack feature of modern Windows systems).

Now your environment is setup to generate the required project files for doxygen.
cd into the doxygen—-x. vy . z directory, create and cd to a build directory

Generated by Doxygen 1.8.10.1

http://www.cmake.org/download/
http://www.cmake.org/download/
http://en.wikipedia.org/wiki/Cygwin
http://www.mingw.org/
http://sourceforge.net/projects/winflexbison
http://sourceforge.net/projects/winflexbison
http://www.python.org
http://gnuwin32.sourceforge.net/packages.html
http://gnuwin32.sourceforge.net/packages.html
http://www.7-zip.org

2.4 Installing the binaries on Windows 9

mkdir build
cd build
cmake -G "Visual Studio 12 2013"

Note that compiling Doxywizard currently requires Qt version 4 (see http://gt-project.org/).
Also read the next section for additional tools you may need to install to run doxygen with certain features
enabled.

2.4 Installing the binaries on Windows

Doxygen comes as a self-installing archive, so installation is extremely simple. Just follow the dialogs.

After installation it is recommended to also download and install GraphViz (version 2.20 or better is highly
recommended). Doxygen can use the dot tool of the GraphViz package to render nicer diagrams, see the HAV«
E_DOT option in the configuration file.

If you want to produce compressed HTML files (see GENERATE_HTMLHELP) in the config file, then you need
the Microsoft HTML help workshop. You can download it from Microsoft.

If you want to produce Qt Compressed Help files (see QHG_LOCATION) in the config file, then you need
ghelpgenerator which is part of Qt. You can download Qt from Ot Software Downloads.

In order to generate PDF output or use scientific formulas you will also need to install LaTeX and
Ghostscript.

For IATEX a number of distributions exists. Popular ones that should work with doxygen are MikTex and pro«
TeXt.

Ghostscript can be downloaded from Sourceforge.

After installing ISTEX and Ghostscript you'll need to make sure the tools latex.exe, pdflatex.exe, and gswin32c.«
exe are present in the search path of a command box. Follow these instructions if you are unsure and run the
commands from a command box to verify it works.

Generated by Doxygen 1.8.10.1

http://qt-project.org/
http://www.microsoft.com/en-us/download/details.aspx?id=21138
http://qt-project.org/downloads
http://en.wikipedia.org/wiki/LaTeX
http://en.wikipedia.org/wiki/Ghostscript
http://www.miktex.org
http://www.tug.org/protext/
http://www.tug.org/protext/
http://sourceforge.net/projects/ghostscript/
http://www.computerhope.com/issues/ch000549.htm

10

Installation

Generated by Doxygen 1.8.10.1

Chapter 3

Getting Started

The executable doxygen is the main program that parses the sources and generates the documentation. See
section Doxygen usage for more detailed usage information.

Optionally, the executable doxywi zard can be used, which is a graphical front-end for editing the configuration
file that is used by doxygen and for running doxygen in a graphical environment. For Mac OS X doxywizard will be
started by clicking on the Doxygen application icon.

The following figure shows the relation between the tools and the flow of information between them (it looks
complex but that's only because it tries to be complete):

[
Doxywizard E Your application custom
d output
rea ;
generate/edit XML files doxmlparser lib -
Config file]
Layout file Doxyfile
make ps postscript
L fil
generate generate atex tiles latex
read update + R
Makefile make pdf PDF
read Il
Sources Doxygen
|H read
read generate
; Man pages
Custom pag
— headers i
— footers Tag file(s) o ‘
— images |||/ A ! Windows only !
= I I
I I
‘ import | doc
refman.rtf T MS-Word .
I I
HTML read | chm !
pages : HTML Help Workshop — 3

Figure 3.1: Doxygen information flow

12 Getting Started

3.1 Step 0: Check if doxygen supports your programming language

First, assure that your programming language has a reasonable chance of being recognized by Doxygen. These
languages are supported by default: C, C++, C#, Objective-C, IDL, Java, VHDL, PHP, Python, Tcl, Fortran, and
D. It is possible to configure certain file type extensions to use certain parsers: see the Configuration/Extension«
Mappings for details. Also, completely different languages can be supported by using preprocessor programs: see
the Helpers page for details.

3.2 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should get its own configuration file.

A project can consist of a single source file, but can also be an entire source tree that is recursively scanned.
To simplify the creation of a configuration file, doxygen can create a template configuration file for you. To do
this call doxygen from the command line with the —g option:

doxygen —-g <config-file>

where <config-file> is the name of the configuration file. If you omit the file name, a file named Doxyfile will
be created. If a file with the name <config-file>> already exists, doxygen will rename it to <config-file>.bak before
generating the configuration template. If you use - (i.e. the minus sign) as the file name then doxygen will try to
read the configuration file from standard input (st din), which can be useful for scripting.

The configuration file has a format that is similar to that of a (simple) Makefile. It consists of a number of
assignments (tags) of the form:

TAGNAME = VALUE or
TAGNAME = VALUEl VALUE2

You can probably leave the values of most tags in a generated template configuration file to their default value.
See section Configuration for more details about the configuration file.

If you do not wish to edit the config file with a text editor, you should have a look at doxywizard, which is a GUI
front-end that can create, read and write doxygen configuration files, and allows setting configuration options by
entering them via dialogs.

For a small project consisting of a few C and/or C++ source and header files, you can leave INPUT tag empty
and doxygen will search for sources in the current directory.

If you have a larger project consisting of a source directory or tree you should assign the root directory or
directories to the INPUT tag, and add one or more file patterns to the FILE_PATTERNS tag (for instance . cpp
*.h). Only files that match one of the patterns will be parsed (if the patterns are omitted a list of typical patterns is
used for the types of files doxygen supports). For recursive parsing of a source tree you must set the RECURSIVE
tag to YES. To further fine-tune the list of files that is parsed the EXCLUDE and EXCLUDE_PATTERNS tags can
be used. To omit all test directories from a source tree for instance, one could use:

EXCLUDE_PATTERNS = */test/x*

Doxygen looks at the file's extension to determine how to parse a file, using the following table:

Extension | Language
.idl | IDL
.ddl | IDL
.odl | IDL
Jjava | Java
.cs | C#
d| D
.php | PHP
.php4 | PHP
.php5 | PHP
.inc | PHP
.phtml | PHP
.m | Objective-C
.M | Objective-C

Generated by Doxygen 1.8.10.1

http://www.doxygen.org/helpers.html

3.3 Step 2: Running doxygen

13

Extension | Language
.mm | Objective-C
.py | Python
.f | Fortran
for | Fortran
.fo0 | Fortran
.vhd | VHDL
.vhdl | VHDL
el | TCL
.ucf | VHDL
.gsf | VHDL
.md | Markdown
.markdown | Markdown

Any other extension is parsed as if it is a C/C++ file.

If you start using doxygen for an existing project (thus without any documentation that doxygen is aware of), you
can still get an idea of what the structure is and how the documented result would look like. To do so, you must
set the EXTRACT_ALL tag in the configuration file to YES. Then, doxygen will pretend everything in your sources
is documented. Please note that as a consequence warnings about undocumented members will not be generated
as long as EXTRACT_ALL is setto YES.

To analyze an existing piece of software it is useful to cross-reference a (documented) entity with its definition
in the source files. Doxygen will generate such cross-references if you set the SOURCE_BROWSER tag to YES.
It can also include the sources directly into the documentation by setting INLINE_SOURCES to YES (this can be
handy for code reviews for instance).

3.3 Step 2: Running doxygen

To generate the documentation you can now enter:

doxygen <config-file>

Depending on your settings doxygen will create html, rtf, latex, xml, man, and/or docbook directories
inside the output directory. As the names suggest these directories contain the generated documentation in HTML,
RTF, IATEX, XML, Unix-Man page, and DocBook format.

The default output directory is the directory in which doxygen is started. The root directory to which the
output is written can be changed using the OUTPUT_DIRECTORY. The format specific directory within the output
directory can be selected using the HTML_OUTPUT, RTF_OUTPUT, LATEX_OUTPUT, XML_OUTPUT, MAN_ «
OUTPUT, and DOCBOOK_OUTPUT. tags of the configuration file. If the output directory does not exist, doxygen
will try to create it for you (but it will not try to create a whole path recursively, like mkdir -p does).

3.3.1 HTML output

The generated HTML documentation can be viewed by pointing a HTML browser to the index.html file in the
html directory. For the best results a browser that supports cascading style sheets (CSS) should be used (I'm
using Mozilla Firefox, Google Chrome, Safari, and sometimes IE8, IE9, and Opera to test the generated output).

Some of the features the HTML section (such as GENERATE_TREEVIEW or the search engine) require a
browser that supports Dynamic HTML and Javascript enabled.

3.3.2 LaTeX output

The generated IATEX documentation must first be compiled by a IATEX compiler (I use a recent teTeX distribution for
Linux and MacOSX and MikTex for Windows). To simplify the process of compiling the generated documentation,
doxygen writes a Makefile into the Latex directory (on the Windows platform also a make .bat batch file is
generated).

The contents and targets in the Makefile depend on the setting of USE_PDFLATEX. If it is disabled (set to
NO), then typing make in the 1latex directory a dvi file called refman . dvi will be generated. This file can then
be viewed using xdvi or converted into a PostScript file refman . ps by typing make ps (this requires dvips).

Generated by Doxygen 1.8.10.1

14 Getting Started

To put 2 pages on one physical page use make ps_2onl instead. The resulting PostScript file can be send
to a PostScript printer. If you do not have a PostScript printer, you can try to use ghostscript to convert PostScript
into something your printer understands.

Conversion to PDF is also possible if you have installed the ghostscript interpreter; just type make pdf (or
make pdf_2onl).

To get the best results for PDF output you should set the PDF_HYPERLINKS and USE_PDFLATEX tags to
YES. In this case the Makefile will only contain a target to build re fman . pdf directly.

3.3.3 RTF output

Doxygen combines the RTF output to a single file called refman.rtf. This file is optimized for importing into the
Microsoft Word. Certain information is encoded using so called fields. To show the actual value you need to select
all (Edit - select all) and then toggle fields (right click and select the option from the drop down menu).

3.3.4 XML output

The XML output consists of a structured "dump” of the information gathered by doxygen. Each compound (class/-
namespace/file/...) has its own XML file and there is also an index file called index . xml.

A file called combine.xslt XSLT script is also generated and can be used to combine all XML files into a
single file.

Doxygen also generates two XML schema files index . xsd (for the index file) and compound. xsd (for the
compound files). This schema file describes the possible elements, their attributes and how they are structured, i.e.
it the describes the grammar of the XML files and can be used for validation or to steer XSLT scripts.

In the addon/doxmlparser directory you can find a parser library for reading the XML output produced by
doxygen in an incremental way (see addon/doxmlparser/include/doxmlintf.h for the interface of the
library)

3.3.5 Man page output

The generated man pages can be viewed using the man program. You do need to make sure the man directory is
in the man path (see the MANPATH environment variable). Note that there are some limitations to the capabilities
of the man page format, so some information (like class diagrams, cross references and formulas) will be lost.

3.3.6 DocBook output

Doxygen can also generate output in the DocBook format. How to process the DocBook output is beyond the
scope of this manual.

3.4 Step 3: Documenting the sources

Although documenting the sources is presented as step 3, in a new project this should of course be step 1. Here |
assume you already have some code and you want doxygen to generate a nice document describing the APl and
maybe the internals and some related design documentation as well.

If the EXTRACT_ALL option is set to NO in the configuration file (the default), then doxygen will only generate
documentation for documented entities. So how do you document these? For members, classes and namespaces
there are basically two options:

1. Place a special documentation block in front of the declaration or definition of the member, class or names-
pace. For file, class and namespace members it is also allowed to place the documentation directly after the
member.

See section Special comment blocks to learn more about special documentation blocks.
2. Place a special documentation block somewhere else (another file or another location) and put a structural

command in the documentation block. A structural command links a documentation block to a certain entity
that can be documented (e.g. a member, class, namespace or file).

See section Documentation at other places to learn more about structural commands.

Generated by Doxygen 1.8.10.1

http://www.docbook.org/

3.4 Step 3: Documenting the sources 15

The advantage of the first option is that you do not have to repeat the name of the entity.

Files can only be documented using the second option, since there is no way to put a documentation block
before a file. Of course, file members (functions, variables, typedefs, defines) do not need an explicit structural
command; just putting a special documentation block in front or behind them will work fine.

The text inside a special documentation block is parsed before it is written to the HTML and/or IATEX output files.

During parsing the following steps take place:

« Markdown formatting is replaced by corresponding HTML or special commands.

« The special commands inside the documentation are executed. See section Special Commands for an
overview of all commands.

If a line starts with some whitespace followed by one or more asterisks (*) and then optionally more whites-
pace, then all whitespace and asterisks are removed.

« All resulting blank lines are treated as a paragraph separators. This saves you from placing new-paragraph
commands yourself in order to make the generated documentation readable.

* Links are created for words corresponding to documented classes (unless the word is preceded by a %; then
the word will not be linked and the % sign is removed).

+ Links to members are created when certain patterns are found in the text. See section Automatic link gener-
ation for more information on how the automatic link generation works.

+ HTML tags that are in the documentation are interpreted and converted to IKTEX equivalents for the IATEX
output. See section HTML Commands for an overview of all supported HTML tags.

Generated by Doxygen 1.8.10.1

16

Getting Started

Generated by Doxygen 1.8.10.1

Chapter 4

Documenting the code

This chapter covers two topics:

1. How to put comments in your code such that doxygen incorporates them in the documentation it generates.
This is further detailed in the next section.

2. Ways to structure the contents of a comment block such that the output looks good, as explained in section
Anatomy of a comment block.

4.1 Special comment blocks

A special comment block is a C or C++ style comment block with some additional markings, so doxygen knows it
is a piece of structured text that needs to end up in the generated documentation. The next section presents the
various styles supported by doxygen.

For Python, VHDL, Fortran, and Tcl code there are different commenting conventions, which can be found in
sections Comment blocks in Python, Comment blocks in VHDL, Comment blocks in Fortran, and Comment blocks
in Tcl respectively.

4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)

For each entity in the code there are two (or in some cases three) types of descriptions, which together form
the documentation for that entity; a brief description and detailed description, both are optional. For methods
and functions there is also a third type of description, the so called in body description, which consists of the
concatenation of all comment blocks found within the body of the method or function.

Having more than one brief or detailed description is allowed (but not recommended, as the order in which the
descriptions will appear is not specified).

As the name suggest, a brief description is a short one-liner, whereas the detailed description provides longer,
more detailed documentation. An "in body" description can also act as a detailed description or can describe a
collection of implementation details. For the HTML output brief descriptions are also used to provide tooltips at
places where an item is referenced.

There are several ways to mark a comment block as a detailed description:

1. You can use the JavaDoc style, which consist of a C-style comment block starting with two *'s, like this:

/ x*
* ... text ...

*/

2. or you can use the Qt style and add an exclamation mark (!) after the opening of a C-style comment block,
as shown in this example:

/%!
* ... text ...
x/

In both cases the intermediate *'s are optional, so

Documenting the code

/!

. text ...
*/
is also valid.

3. Athird alternative is to use a block of at least two C++ comment lines, where each line starts with an additional
slash or an exclamation mark. Here are examples of the two cases:

/]
/// ... text ...
/]

or

//!
//V... text ...
//!

Note that a blank line ends a documentation block in this case.

4. Some people like to make their comment blocks more visible in the documentation. For this purpose you can
use the following:

/**//**
* ... text

Kk ok kkk Ak ok hkhkhk kA kA hkkhkkkkkkkkkkkhkkkkkkkkxkxk/

(note the 2 slashes to end the normal comment block and start a special comment block).

or

[P0 0077777777777 7777777777777777777777
/// ... text ...
[P0 7777777777777777777777777777777777

For the brief description there are also several possibilities:

1. One could use the \brief command with one of the above comment blocks. This command ends at the end of
a paragraph, so the detailed description follows after an empty line.

Here is an example:

/! \brief Brief description.
* Brief description continued.
*

* Detailed description starts here.
x/

2. If JAWVADOC_AUTOBRIEF is set to YES in the configuration file, then using JavaDoc style comment blocks
will automatically start a brief description which ends at the first dot followed by a space or new line. Here is
an example:

/x% Brief description which ends at this dot. Details follow
* here.

x/
The option has the same effect for multi-line special C++ comments:

/// Brief description which ends at this dot. Details follow
/// here.

3. A third option is to use a special C++ style comment which does not span more than one line. Here are two
examples:

Generated by Doxygen 1.8.10.1

4.1 Special comment blocks 19

/// Brief description.
/*+ Detailed description. =/

or

//! Brief description.

//! Detailed description
//! starts here.

Note the blank line in the last example, which is required to separate the brief description from the block
containing the detailed description. The JAVADOC_AUTOBRIEF should also be set to NO for this case.

As you can see doxygen is quite flexible. If you have multiple detailed descriptions, like in the following example:

//! Brief description, which is

//! really a detailed description since it spans multiple lines.
/*! Another detailed description!

*/

They will be joined. Note that this is also the case if the descriptions are at different places in the code! In this
case the order will depend on the order in which doxygen parses the code.

Unlike most other documentation systems, doxygen also allows you to put the documentation of members
(including global functions) in front of the definition. This way the documentation can be placed in the source file
instead of the header file. This keeps the header file compact, and allows the implementer of the members more
direct access to the documentation. As a compromise the brief description could be placed before the declaration
and the detailed description before the member definition.

Putting documentation after members

If you want to document the members of a file, struct, union, class, or enum, it is sometimes desired to place the
documentation block after the member instead of before. For this purpose you have to put an additional < marker

in the comment block. Note that this also works for the parameters of a function.
Here are some examples:

int var; /x!< Detailed description after the member =/

This block can be used to put a Qt style detailed documentation block affer a member. Other ways to do the same
are:

int var; /*+< Detailed description after the member */
or

int var; //!< Detailed description after the member

//1<
or

int var; ///< Detailed description after the member
///<

Most often one only wants to put a brief description after a member. This is done as follows:
int var; //!< Brief description after the member
or
int var; ///< Brief description after the member

For functions one can use the @param command to document the parameters and then use [in], [out],
[in, out] to document the direction. For inline documentation this is also possible by starting with the direction
attribute, e.g.

void foo(int v /**< [in] docs for input parameter v. =/);

Note that these blocks have the same structure and meaning as the special comment blocks in the previous
section only the < indicates that the member is located in front of the block instead of after the block.
Here is an example of the use of these comment blocks:

Generated by Doxygen 1.8.10.1

20 Documenting the code

/*! A test class x/

class Test
{
public:
/** An enum type.
* The documentation block cannot be put after the enum!
x/
enum EnumType

{

int EVall, /*%< enum value 1 =/
int EVal2 /*x< enum value 2 «*/
bi
void member () ; //!'< a member function.
protected:
int value; /+!1< an integer value */
Vi
Warning

These blocks can only be used to document members and parameters. They cannot be used to document
files, classes, unions, structs, groups, namespaces and enums themselves. Furthermore, the structural com-
mands mentioned in the next section (like \class) are not allowed inside these comment blocks.

Examples

Here is an example of a documented piece of C++ code using the Qt style:

//! A test class.
/%!

A more elaborate class description.
*/

class Test
{
public:

//! An enum.
/+! More detailed enum description. =/
enum TEnum {
TVall, /*!< Enum value TVall. x/
TVal2, /*!< Enum value TVal2. x/
TVal3 /+!< Enum value TVal3. x/
}
//! Enum pointer.
/x! Details. */
*enumPtr,
//! Enum variable.
/*! Details. =/
enumVar;

//! A constructor.
/!
A more elaborate description of the constructor.
*/
Test () ;

//! A destructor.
/!
A more elaborate description of the destructor.
*/
~Test () ;

//!' A normal member taking two arguments and returning an integer value.
/x!
\param a an integer argument.
\param s a constant character pointer.
\return The test results
\sa Test (), ~Test (), testMeToo() and publicVar ()
*/
int testMe (int a,const char =*s);

//! A pure virtual member.
/%!
\sa testMe ()
\param cl the first argument.
\param c2 the second argument.
*/
virtual void testMeToo (char cl,char c2) = 0;

//! A public variable.
/x !

Generated by Doxygen 1.8.10.1

4.1 Special comment blocks 21

Details.
*/
int publicVar;

//! A function variable.
/%!
Details.
*/
int (xhandler) (int a,int b);

The brief descriptions are included in the member overview of a class, namespace or file and are printed using
a small italic font (this description can be hidden by setting BRIEF_MEMBER_DESC to NO in the config file). By
default the brief descriptions become the first sentence of the detailed descriptions (but this can be changed by

setting the REPEAT_BRIEF tag to NO). Both the brief and the detailed descriptions are optional for the Qt style.

By default a JavaDoc style documentation block behaves the same way as a Qt style documentation block.
This is not according the JavaDoc specification however, where the first sentence of the documentation block is
automatically treated as a brief description. To enable this behavior you should set JAVADOC_AUTOBRIEF to YES
in the configuration file. If you enable this option and want to put a dot in the middle of a sentence without ending it,
you should put a backslash and a space after it. Here is an example:

/*% Brief description (e.g.\ using only a few words). Details follow. =/

Here is the same piece of code as shown above, this time documented using the JavaDoc style and JAVADO«-
C_AUTOBRIEF set to YES:

/*x
* A test class. A more elaborate class description.
*/

class Test

{
public:

/ x*
* An enum.
* More detailed enum description.

*/

enum TEnum {
TVall, /#*< enum value TVall. x/
TVal2, /x*< enum value TVal2. x/
TVal3 /#*x< enum value TVal3. =/
}
xrenumPtr, /**< enum pointer. Details. x/
enumVar; /#*< enum variable. Details. =/

/ **
* A constructor.
* A more elaborate description of the constructor.
*/

Test () ;

/ x*
* A destructor.
* A more elaborate description of the destructor.
*/
~Test () ;

[x*
* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.

@param s a constant character pointer.

@see Test ()

@see ~Test ()

@see testMeToo ()

@see publicVar ()

* @return The test results

*/

int testMe (int a,const char =xs);

EaE S

[**
* A pure virtual member.
* @see testMe ()
* @param cl the first argument.
* @param c2 the second argument.
*/

virtual void testMeToo (char cl,char c2) = 0;

[x*
* a public variable.
* Details.

Generated by Doxygen 1.8.10.1

22 Documenting the code

*/
int publicVar;

/ x*

* a function variable.

* Details.

*/

int (xhandler) (int a,int b);

Similarly, if one wishes the first sentence of a Qt style documentation block to automatically be treated as a brief
description, one may set QT_AUTOBRIEF to YES in the configuration file.

Documentation at other places

In the examples in the previous section the comment blocks were always located in front of the declaration or
definition of a file, class or namespace or in front or after one of its members. Although this is often comfortable,
there may sometimes be reasons to put the documentation somewhere else. For documenting a file this is even
required since there is no such thing as "in front of a file".

Doxygen allows you to put your documentation blocks practically anywhere (the exception is inside the body of
a function or inside a normal C style comment block).

The price you pay for not putting the documentation block directly before (or after) an item is the need to put a
structural command inside the documentation block, which leads to some duplication of information. So in practice

you should avoid the use of structural commands unless other requirements force you to do so.

Structural commands (like all other commands) start with a backslash (\), or an at-sign (@) if you prefer JavaDoc
style, followed by a command name and one or more parameters. For instance, if you want to document the class
Test in the example above, you could have also put the following documentation block somewhere in the input that
is read by doxygen:

/*! \class Test
\brief A test class.

A more detailed class description.

*/

Here the special command \class is used to indicate that the comment block contains documentation for the
class Test. Other structural commands are:

* \struct to document a C-struct.

* \union to document a union.

» \enum to document an enumeration type.

+ \ £n to document a function.

* \var to document a variable or typedef or enum value.
+ \def to document a #define.

» \typedef to document a type definition.

* \file to document afile.

* \namespace to document a namespace.

* \package to document a Java package.

* \interface to document an IDL interface.

See section Special Commands for detailed information about these and many other commands.

To document a member of a C++ class, you must also document the class itself. The same holds for names-
paces. To document a global C function, typedef, enum or preprocessor definition you must first document the file
that contains it (usually this will be a header file, because that file contains the information that is exported to other
source files).

Generated by Doxygen 1.8.10.1

4.1 Special comment blocks 23

Attention

Let's repeat that, because it is often overlooked: to document global objects (functions, typedefs, enum,
macros, etc), you must document the file in which they are defined. In other words, there must at least be a

/x! \file =/
ora
/*xx Q@file =/

line in this file.

Here is an example of a C header named st ructcmd. h that is documented using structural commands:

/*! \file structcmd.h
\brief A Documented file.

Details.

*/

/! \def MAX(a,Db)
\brief A macro that returns the maximum of \a a and \a b.

Details.

/! \var typedef unsigned int UINT32
\brief A type definition for a .

Details.
*/

/%! \var int errno
\brief Contains the last error code.

\warning Not thread safe!

*/

/%! \fn int open(const char xpathname,int flags)
\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.
*/

/*! \fn int close(int fd)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*/

/x! \fn size_t write(int fd,const char xbuf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.
\param buf The data buffer to write.
\param count The number of bytes to write.

*/

/* ! \fn int read(int fd,char xbuf,size_t count)
\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.

\param count The number of bytes to read.

*/

#define MAX (a,b) (((a)>(b))?(a): (b))
typedef unsigned int UINT32;

int errno;

int open(const char x,int);

int close(int);

size_t write(int,const char %, size_t);
int read(int,char *,size_t);

Because each comment block in the example above contains a structural command, all the comment blocks
could be moved to another location or input file (the source file for instance), without affecting the generated doc-
umentation. The disadvantage of this approach is that prototypes are duplicated, so all changes have to be made
twice! Because of this you should first consider if this is really needed, and avoid structural commands if possible. |
often receive examples that contain \fn command in comment blocks which are place in front of a function. This is
clearly a case where the \fn command is redundant and will only lead to problems.

When you place a comment block in a file with one of the following extensions .dox, .txt, or .doc then
doxygen will hide this file from the file list.

If you have a file that doxygen cannot parse but still would like to document it, you can show it as-is using
\verbinclude, e.g.

Generated by Doxygen 1.8.10.1

24

Documenting the code

/*! \file myscript.sh
* Look at this nice script:
* \verbinclude myscript.sh

*/

Make sure that the script is explicitly listed in the INPUT or that FILE_PATTERNS includes the . sh extention

and the the script can be found in the path set via EXAMPLE_PATH.

4.1.2 Comment blocks in Python

For Python there is a standard way of documenting the code using so called documentation strings. Such strings
are stored in doc and can be retrieved at runtime. Doxygen will extract such comments and assume they have to

be represented in a preformatted way.

1 """@package docstring

2 Documentation for this module.

3

4 More details.

5 mwmn

6

7 def func():

8 """Documentation for a function.
9

10 More details.

11 W

12)

13

14 class PyClass:

15 """Documentation for a class.
16

17 More details.

18 e

19

20 def __init__ (self):

21 """The constructor."""

22 self._memvVar = 0;

23

24 def PyMethod (self):

25 """Documentation for a method."""
27

Note that in this case none of doxygen's special commands are supported.

There is also another way to document Python code using comments that start with "##". These type of comment
blocks are more in line with the way documentation blocks work for the other languages supported by doxygen and

this also allows the use of special commands.

Here is the same example again but now using doxygen style comments:

1 ## @package pyexample

2 # Documentation for this module.
3 #

4 # More details.

5

6 ## Documentation for a function.
7 #

8 # More details.

9 def func():

10 1

11

12 ## Documentation for a class.
13 #

14 # More details.
15 class PyClass:

16

17 ## The constructor.

18 def __init__ (self):

19 self._memVar = 0;

20

21 ## Documentation for a method.
22 # (@param self The object pointer.
23 def PyMethod (self):

24 ss

25

26 ## A class variable.

27 classVar = 0;

28

29 ## @var _memVar

30 # a member variable

Since python looks more like Java than like C or C++, you should set OPTIMIZE_OUTPUT_JAVA to YES in the

config file.

Generated by Doxygen 1.8.10.1

4.1 Special comment blocks 25

4.1.3 Comment blocks in VHDL

For VHDL a comment normally start with "--". Doxygen will extract comments starting with "--I". There are only two
types of comment blocks in VHDL; a one line "--I" comment representing a brief description, and a multi-line "--!"
comment (where the "--I" prefix is repeated for each line) representing a detailed description.

Comments are always located in front of the item that is being documented with one exception: for ports the
comment can also be after the item and is then treated as a brief description for the port.

Here is an example VHDL file with doxygen comments:

2 —-! @file

3 --! @brief 2:1 Mux using with-select

4 ,,,
5

6 —-! Use standard library

7 library ieee;

8 —-! Use logic elements

9 use ieee.std_logic_1164.al11;

10

11 —-! Mux entity brief description

12

13 --! Detailed description of this

14 —-! mux design element.

15 ity mux_using_with

16 port (

17 din_0 : in std_logic; --! Mux first input
18 din_1 s ir std_logic; --! Mux Second input
19 sel : std_logic; --! Select input
20 mux_out : - std_logic --! Mux output
21)i

22 end entity;

23

24 —-! Q@brief Architecture definition of the MUX

25 --! @details More details about this mux element.
26 art itecture behavior of mux_using_with is

27 begin

28 wi (sel)

29 mux_out <= din_0 v ror,

30 din_1 when others;

31 end architecture;

32

To get proper looking output you need to set OPTIMIZE_OUTPUT_VHDL to YES in the config file. This will also
affect a number of other settings. When they were not already set correctly doxygen will produce a warning telling
which settings where overruled.

4.1.4 Comment blocks in Fortran

When using doxygen for Fortran code you should set OPTIMIZE_FOR_FORTRAN to YES.

The parser tries to guess if the source code is fixed format Fortran or free format Fortran code. This may not
always be correct. If not one should use EXTENSION_MAPPING to correct this. By setting EXTENSION_MAPP
ING = f=FortranFixed f90=FortranFree files with extension f are interpreted as fixed format Fortran
code and files with extension £90 are interpreted as free format Fortran code.

For Fortran "I>" or "I<" starts a comment and "!!" or "!>>" can be used to continue an one line comment into a
multi-line comment.

Here is an example of a documented Fortran subroutine:

!> Build the restriction matrix for the aggregation
!'!l method.

!'l @param aggr information about the aggregates

!'l @todo Handle special case

subroutine intrestbuild (A, aggr,Restrict,A_ghost)
implicit none

Type (spmtx), intent (in) :: a !< our fine level matrix
Type (aggrs), intent (in) :: aggr

Type (spmtx), intent (out) :: restrict !< Our restriction matrix
]

end subroutine

As an alternative you can also use comments in fixed format code:

C> Function comment
C> another line of comment
function a (i)
C> input parameter
integer i
end function A

Generated by Doxygen 1.8.10.1

26 Documenting the code

4.1.5 Comment blocks in Tcl

Doxygen documentation can be included in normal Tcl comments.

To start a new documentation block start a line with ## (two hashes). All following comment lines and continu-
ation lines will be added to this block. The block ends with a line not starting with a # (hash sign).

A brief documentation can be added with ;#< (semicolon, hash and lower then sign). The brief documentation
also ends at a line not starting with a # (hash sign).

Inside doxygen comment blocks all normal doxygen markings are supported. The only exceptions are described
in the following two paragraphs.

If a doxygen comment block ends with a line containing only #\code or #@code all code until a line only
containing #\endcode or #@endcode is added to the generated documentation as code block.

If a doxygen comment block ends with a line containing only #\verbatim or #@verbatim all code until a
line only containing #\endverbatimor #@endverbatim is added verbatim to the generated documentation.

To detect namespaces, classes, functions and variables the following Tcl commands are recognized. Documen-
tation blocks can be put on the lines before the command.

* namespace eval .. Namespace
* proc .. Function

* variable .. Variable

e common .. Common variable

e itcl::class .. Class

* itcl::body .. Class method body definition
* oo::class create .. Class

* co::define .. OO Class definition
*» method .. Class method definitions
* constructor .. Class constructor
* destructor .. Class destructor

* public .. Set protection level

* protected .. Set protection level

* private .. Set protection level

Following is an example using doxygen style comments:

1 ## \file tclexample.tcl

2 # File documentation.

3 #\verbatim

4

5 # Startup code:)

6 exec tclsh "$0" "s@"

7 #\endverbatim

8 ## Documented namespace \c ns .

9 # The code is inserted here:

10 #\code

11 namespace eval ns {

12 ## Documented proc \c ns_proc .

13 # param[in] arg some argument

14 proc ns_proc {arg} {}

15 ## Documented var \c ns_var .

16 # Some documentation.

17 variable ns_var

18 ## Documented itcl class \c itcl_class .
19 itcl::class itcl_class {

20 ## Create object.

21 constructor {args} {eval $args}

22 ## Destroy object.

23 destructor {exit}

24 ## Documented itcl method \c itcl_method_x .
25 # param[in] arg Argument

26 private method itcl_method_x {arg}{}
27 ## Documented itcl method \c itcl_method_y .

Generated by Doxygen 1.8.10.1

4.2 Anatomy of a comment block 27

28 # param[in] arg Argument

29 protected method itcl_method_y {arg} {}

30 ## Documented itcl method \c itcl_method_z

31 # param[in] arg Argument

32 public method itcl_method_z {arg} {}

33 ## Documented common itcl var \c itcl_Var

34 common itcl_Var

35 ## \protectedsection

36

37 variable itcl_varl; #< Documented itcl var \c itcl_varl
38 variable itcl_var2}

39 ## Documented oo class \c oo_class .

40 oo::class create oo_class {

41 ## Create object.

42 # Configure with args

43 constructor {args} {eval Sargs}

44 ## Destroy object.

45 # Exit.

46 destructor {exit}

47 ## Documented oo var \c oo_var .

48 # Defined inside class

49 variable oo_var

50 ## \private Documented oo method \c oo_method_x .
51 # param[in] arg Argument

52 method oo_method_x {arg} {}

53 ## \protected Documented oo method \c oo_method_y .
54 # param[in] arg Argument

55 method oo_method_y {arg} {}

56 ## \public Documented oo method \c oo_method_z
57 # param[in] arg Argument

58 method oo_method_z {arg} {}

59 }

60 }

61 #\endcode

62

63 itcl::body ::ns::itcl_class::itcl_method_x {argx} {
64 puts "$argx OK"
65 }

67 oo::define ns::00_class {
68 ## \public Outside defined variable \c oo_var_out .

69 # Inside oo_class
70 variable oo_var_out
71}

72

73 ## Documented global proc \c glob_proc .
74 # param[in] arg Argument
75 proc glob_proc {arg} {puts S$Sarg}

77 variable glob_var; #< Documented global var \c glob_var\
78 with newline

79 #< and continued line

80

81 # end of file

4.2 Anatomy of a comment block

The previous section focused on how to make the comments in your code known to doxygen, it explained the
difference between a brief and a detailed description, and the use of structural commands.

In this section we look at the contents of the comment block itself.

Doxygen supports various styles of formatting your comments.

The simplest form is to use plain text. This will appear as-is in the output and is ideal for a short description.

For longer descriptions you often will find the need for some more structure, like a block of verbatim text, a list,
or a simple table. For this doxygen supports the Markdown syntax, including parts of the Markdown Extra
extension.

Markdown is designed to be very easy to read and write. It's formatting is inspired by plain text mail. Markdown
works great for simple, generic formatting, like an introduction page for your project. Doxygen also supports reading
of markdown files directly. See here for more details regards Markdown support.

For programming language specific formatting doxygen has two forms of additional markup on top of Markdown
formatting.

1. Javadoc like markup. See here for a complete overview of all commands supported by doxygen.

2. XML markup as specified in the C# standard. See here for the XML commands supported by doxygen.

If this is still not enough doxygen also supports a subset of the HTML markup language.

Generated by Doxygen 1.8.10.1

http://daringfireball.net/projects/markdown/syntax
http://michelf.com/projects/php-markdown/extra/
http://en.wikipedia.org/wiki/Javadoc
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)#XML_documentation_system
http://en.wikipedia.org/wiki/HTML

28

Documenting the code

Generated by Doxygen 1.8.10.1

Chapter 5

Markdown

Markdown support was introduced in doxygen version 1.8.0. It is a plain text formatting syntax written by John
Gruber, with the following underlying design goal:

The design goal for Markdown's formatting syntax is to make it as readable as possible. The idea is
that a Markdown-formatted document should be publishable as-is, as plain text, without looking like it's
been marked up with tags or formatting instructions. While Markdown's syntax has been influenced by
several existing text-to-HTML filters, the single biggest source of inspiration for Markdown's syntax is
the format of plain text email.

In the next section the standard Markdown features are briefly discussed. The reader is referred to the
Markdown site for more details.

Some enhancements were made, for instance PHP Markdown Extra, and GitHub flavored
Markdown. The section Markdown Extensions discusses the extensions that doxygen supports.

Finally section Doxygen specifics discusses some specifics for doxygen's implementation of the Markdown
standard.

5.1 Standard Markdown

5.1.1 Paragraphs

Even before doxygen had Markdown support it supported the same way of paragraph handling as Markdown: to

make a paragraph you just separate consecutive lines of text by one or more blank lines.
An example:

Here is text for one paragraph.

We continue with more text in another paragraph.

5.1.2 Headers

Just like Markdown, doxygen supports two types of headers
Level 1 or 2 headers can be made as the follows

This is a level 1 header

This is a level 2 header

A header is followed by a line containing only ='s or -'s. Note that the exact amount of ='s or -'s is not important
as long as there are at least two.
Alternatively, you can use #'s at the start of a line to make a header. The number of #'s at the start of the line

determines the level (up to 6 levels are supported). You can end a header by any number of #'s.
Here is an example:

This is a level 1 header

#4## This is level 3 header #####4##

http://daringfireball.net/projects/markdown
http://daringfireball.net/projects/markdown
http://michelf.com/projects/php-markdown/extra/
http://github.github.com/github-flavored-markdown/
http://github.github.com/github-flavored-markdown/

30 Markdown

5.1.3 Block quotes

Block quotes can be created by starting each line with one or more >'s, similar to what is used in text-only emails.

> This is a block quote
> spanning multiple lines

Lists and code blocks (see below) can appear inside a quote block. Quote blocks can also be nested.
Note that doxygen requires that you put a space after the (last) > character to avoid false positives, i.e. when
writing

0 1if OK\n
>1 if NOK

the second line will not be seen as a block quote.

5.1.4 Lists

Simple bullet lists can be made by starting a line with -, +, or *.

- Item 1

More text for this item.
- Item 2

+ nested list item.

+ another nested item.
- Item 3

List items can span multiple paragraphs (if each paragraph starts with the proper indentation) and lists can be
nested. You can also make a numbered list like so

1. First item.
2. Second item.

Make sure to also read Lists Extensions for doxygen specifics.

5.1.5 Code Blocks

Preformatted verbatim blocks can be created by indenting each line in a block of text by at least 4 extra spaces

This a normal paragraph
This is a code block

We continue with a normal paragraph again.

Doxygen will remove the mandatory indentation from the code block. Note that you cannot start a code block in
the middle of a paragraph (i.e. the line preceding the code block must be empty).

See section Code Block Indentation for more info how doxygen handles indentation as this is slightly different
than standard Markdown.

5.1.6 Horizontal Rulers
A horizontal ruler will be produced for lines containing at least three or more hyphens, asterisks, or underscores.

The line may also include any amount of whitespace.
Examples:

Note that using asterisks in comment blocks does not work. See Use of asterisks for details.

Generated by Doxygen 1.8.10.1

5.1 Standard Markdown 31

5.1.7 Emphasis

To emphasize a text fragment you start and end the fragment with an underscore or star. Using two stars or

underscores will produce strong emphasis.
Examples:

single asterisksx
single underscores

double asterisksxx
__double underscores_

See section Emphasis limits for more info how doxygen handles emphasis spans slightly different than standard
Markdown.

5.1.8 code spans

To indicate a span of code, you should wrap it in backticks (‘). Unlike code blocks, code spans appear inline in a
paragraph. An example:

Use the ‘printf()‘ function.

To show a literal backtick inside a code span use double backticks, i.e.

\ LRRTRY

To assign the output of command ‘ls' to ‘var‘' use ‘‘var=‘ls

See section Code Spans Limits for more info how doxygen handles code spans slightly different than standard
Markdown.

5.1.9 Links

Doxygen supports both styles of make links defined by Markdown: inline and reference.
For both styles the link definition starts with the link text delimited by [square brackets].

Inline Links

For an inline link the link text is followed by a URL and an optional link title which together are enclosed in a set of

regular parenthesis. The link title itself is surrounded by quotes.
Examples:

[The link text]
[The link text]
[The link text]
[The link text]

(http://example.net/)

(http://example.net/ "Link title")
(/relative/path/to/index.html "Link title")
(somefile.html)

In addition doxygen provides a similar way to link a documented entity:

[The link text] (Qref MyClass)

Reference Links

Instead of putting the URL inline, you can also define the link separately and then refer to it from within the text.
The link definition looks as follows:

[link name]: http://www.example.com "Optional title"

Instead of double quotes also single quotes or parenthesis can be used for the title part.
Once defined, the link looks as follows

[link text] [link name]

If the link text and name are the same, also
[link name] []

or even

[1ink name]

Generated by Doxygen 1.8.10.1

32 Markdown

can be used to refer to the link. Note that the link name matching is not case sensitive as is shown in the
following example:

I get 10 times more traffic from [Google] than from
[Yahoo] or [MSN].

[google]: http://google.com/ "Google"
[yahoo]: http://search.yahoo.com/ "Yahoo Search"
[msn] : http://search.msn.com/ "MSN Search"

Link definitions will not be visible in the output.
Like for inline links doxygen also supports @ref inside a link definition:

[myclass]: @ref MyClass "My class"

5.1.10 Images

Markdown syntax for images is similar to that for links. The only difference is an additional ! before the link text.
Examples:

! [Caption text] (/path/to/img. jpg)

! [Caption text] (/path/to/img.jpg "Image title")
! [Caption text] [img def]

!'[img def]

[img def]: /path/to/img.jpg "Optional Title"
Also here you can use @ref to link to an image:

! [Caption text] (@ref image.png)
!'[img def]

[img def]: Q@ref image.png "Caption text"

The caption text is optional.

5.1.11 Automatic Linking
To create a link to an URL or e-mail address Markdown supports the following syntax:

<http://www.example.com>
<https://www.example.com>
<ftp://www.example.com>
<mailto:address@example.com>
<address@example.com>

Note that doxygen will also produce the links without the angle brackets.

5.2 Markdown Extensions

5.2.1 Table of Contents

Doxygen supports a special link marker [TOC] which can be placed in a page to produce a table of contents at the
start of the page, listing all sections.
Note that using [TOC] is the same as using a \tableofcontents command.

5.2.2 Tables

Of the features defined by "Markdown Extra" is support for simple tables:
A table consists of a header line, a separator line, and at least one row line. Table columns are separated by the

pipe (|) character.
Here is an example:

First Header | Second Header
,,,,,,,,,,,,, | ————
Content Cell | Content Cell
Content Cell | Content Cell

which will produce the following table:

Generated by Doxygen 1.8.10.1

http://michelf.com/projects/php-markdown/extra/#table

5.2 Markdown Extensions 33

First Header | Second Header
Content Cell Content Cell
Content Cell Content Cell

Column alignment can be controlled via one or two colons at the header separator line:

Right | Center | Left |

10 | 10 | 10 \
1000 | 1000 | 1000 |

which will look as follows:

Right | Center | Left
10 10 10
1000 | 1000 | 1000

5.2.3 Fenced Code Blocks

Another feature defined by "Markdown Extra" is support for fenced code blocks:

A fenced code block does not require indentation, and is defined by a pair of "fence lines". Such a line consists
of 3 or more tilde (~) characters on a line. The end of the block should have the same number of tildes. Here is an
example:

This is a paragraph introducing:

By default the output is the same as for a normal code block.

For languages supported by doxygen you can also make the code block appear with syntax highlighting. To do
so you need to indicate the typical file extension that corresponds to the programming language after the opening
fence. For highlighting according to the Python language for instance, you would need to write the following:

A class
class Dummy:
pass

which will produce:

1 # A class
2 class Dummy:

3

and for C you would write:

int func(int a,int b) { return ax*b; }

which will produce:

int func(int a,int b) { axb; }

The curly braces and dot are optional by the way.
Another way to denote fenced code blocks is to use 3 or more backticks (*“):

LURYRY

also a fenced code block

RURTRY

Generated by Doxygen 1.8.10.1

http://michelf.com/projects/php-markdown/extra/#fenced-code-blocks

34 Markdown

5.2.4 Header Id Attributes

Standard Markdown has no support for labeling headers, which is a problem if you want to link to a section.
PHP Markdown Extra allows you to label a header by adding the following to the header

Header 1 {#labelid}

Header 2 ## {#labelid2}

To link to a section in the same comment block you can use
[Link text] (#labelid)

to link to a section in general, doxygen allows you to use @ref

[Link text] (@ref labelid)

Note this only works for the headers of level 1 to 4.

5.3 Doxygen specifics

Even though doxygen tries to following the Markdown standard as closely as possible, there are couple of deviation
and doxygen specifics additions.

5.3.1 Including Markdown files as pages

Doxygen can process files with Markdown formatting. For this to work the extension for such a file should be .md
or .markdown (see EXTENSION_MAPPING if your Markdown files have a different extension, and use md as the
name of the parser). Each file is converted to a page (see the page command for details).

By default the name and title of the page are derived from the file name. If the file starts with a level 1 header
however, it is used as the title of the page. If you specify a label for the header (as shown here) doxygen will use
that as the page name.

If the label is called index or mainpage doxygen will put the documentation on the front page (index. «

html).
Here is an example of a file README . md that will appear as the main page when processed by doxygen:

My Main Page {#mainpage}

Documentation that will appear on the main page

If a page has a label you can link to it using @ref as is shown above. To refer to a markdown page without such
label you can simple use the file name of the page, e.g.

See [the other page] (other.md) for more info.

5.3.2 Treatment of HTML blocks

Markdown is quite strict in the way it processes block-level HTML:

block-level HTML elements — e.g. <div>, <table>, <pre>, <p>, etc. — must be separated
from surrounding content by blank lines, and the start and end tags of the block should not be indented
with tabs or spaces.

Doxygen does not have this requirement, and will also process Markdown formatting inside such HTML blocks.
The only exception is <pre> blocks, which are passed untouched (handy for ASCII art).

Doxygen will not process Markdown formatting inside verbatim or code blocks, and in other sections that need
to be processed without changes (for instance formulas or inline dot graphs).

Generated by Doxygen 1.8.10.1

5.3 Doxygen specifics 35

5.3.3 Code Block Indentation

Markdown allows both a single tab or 4 spaces to start a code block. Since doxygen already replaces tabs by
spaces before doing Markdown processing, the effect will only be same if TAB_SIZE in the config file has been set
to 4. When it is set to a higher value spaces will be present in the code block. A lower value will prevent a single tab
to be interpreted as the start of a code block.

With Markdown any block that is indented by 4 spaces (and 8 spaces inside lists) is treated as a code block.
This indentation amount is absolute, i.e. counting from the start of the line.

Since doxygen comments can appear at any indentation level that is required by the programming language, it
uses a relative indentation instead. The amount of indentation is counted relative to the preceding paragraph. In
case there is no preceding paragraph (i.e. you want to start with a code block), the minimal amount of indentation
of the whole comment block is used as a reference.

In most cases this difference does not result in different output. Only if you play with the indentation of para-
graphs the difference is noticeable:
text
text
text

code

In this case Markdown will put the word code in a code block, whereas Doxygen will treat it as normal text, since

although the absolute indentation is 4, the indentation with respect to the previous paragraph is only 1.
Note that list markers are not counted when determining the relative indent:

1. Iteml
More text for iteml
2. Item2

Code block for item2
For ltem1 the indentation is 4 (when treating the list marker as whitespace), so the next paragraph "More text..."

starts at the same indentation level and is therefore not seen as a code block.

5.3.4 Emphasis limits

Unlike standard Markdown, doxygen will not touch internal underscores or stars, so the following will appear as-is:

a_nice_identifier
Furthermore, a * or __ only starts an emphasis if
« it is followed by an alphanumerical character, and
« it is preceded by a space, newline, or one the following characters <{ ([, :;
An emphasis ends if
« it is not followed by an alphanumerical character, and
« it is not preceded by a space, newline, or one the following characters ({ [<=+-\@

Lastly, the span of the emphasis is limited to a single paragraph.

5.3.5 Code Spans Limits

Note that unlike standard Markdown, doxygen leaves the following untouched.

A ‘cool’ word in a ‘nice’ sentence.

In other words; a single quote cancels the special treatment of a code span wrapped in a pair of backtick
characters. This extra restriction was added for backward compatibility reasons.

Generated by Doxygen 1.8.10.1

36 Markdown

5.3.6 Lists Extensions

With Markdown two lists separated by an empty line are joined together into a single list which can be rather
unexpected and many people consider it to be a bug. Doxygen, however, will make two separate lists as you would

expect.
Example:

- Iteml of list 1
- Item2 of list 1

1. Iteml of list 2
2. Item2 of list 2

With Markdown the actual numbers you use to mark the list have no effect on the HTML output Markdown
produces. |.e. standard Markdown treats the following as one list with 3 numbered items:

1. Iteml
1. Item2
1. Item3

Doxygen however requires that the numbers used as marks are in strictly ascending order, so the above example
would produce 3 lists with one item. An item with an equal or lower number than the preceding item, will start a new
list. For example:

Iteml of list
Item2 of list
. Iteml of list
. Item2 of list

BN W
NN P

will produce:

1. Item1 of list 1
2. ltem2 of list 1
1. Item1 of list 2
2. ltem2 of list 2

Historically doxygen has an additional way to create numbered lists by using —# markers:

-# iteml
-# item2

5.3.7 Use of asterisks

Special care has to be taken when using *'s in a comment block to start a list or make a ruler.
Doxygen will strip off any leading *'s from the comment before doing Markdown processing. So although the
following works fine

/*x A list:
* *x 1teml
* x item2

*/

When you remove the leading *'s doxygen will strip the other stars as well, making the list disappear!
Rulers created with *'s will not be visible at all. They only work in Markdown files.

5.3.8 Limits on markup scope

To avoid that a stray * or _ matches something many paragraphs later, and shows everything in between with
emphasis, doxygen limits the scope of a x and _ to a single paragraph.

For a code span, between the starting and ending backtick only two new lines are allowed.

Also for links there are limits; the link text, and link title each can contain only one new line, the URL may not
contain any newlines.

Generated by Doxygen 1.8.10.1

5.4 Debugging of problems 37

5.4 Debugging of problems

When doxygen parses the source code it first extracts the comments blocks, then passes these through the Mark-
down preprocessor. The output of the Markdown preprocessing consists of text with special commands and HTML
commands. A second pass takes the output of the Markdown preprocessor and converts it into the various output
formats.

During Markdown preprocessing no errors are produced. Anything that does not fit the Markdown syntax is
simply passed on as-is. In the subsequent parsing phase this could lead to errors, which may not always be
obvious as they are based on the intermediate format.

To see the result after Markdown processing you can run doxygen with the —d Markdown option. It will then
print each comment block before and after Markdown processing.

Generated by Doxygen 1.8.10.1

38

Markdown

Generated by Doxygen 1.8.10.1

Chapter 6

Lists

Doxygen provides a number of ways to create lists of items.

Using dashes

By putting a number of column-aligned minus (-) signs at the start of a line, a bullet list will automatically be
generated. Instead of the minus sign also plus (+) or asterisk (x) can be used.

Numbered lists can also be generated by using a minus followed by a hash or by using a number followed by a
dot.

Nesting of lists is allowed and is based on indentation of the items.

Here is an example:

A list of events:

— mouse events
—-# mouse move event
—# mouse click event\n

More info about the click event.

—# mouse double click event

- keyboard events
1. key down event
2. key up event

More text here.

Lo S S S S S S

~

The result will be:
A list of events:

* mouse events

1. mouse move event

2. mouse click event
More info about the click event.

3. mouse double click event
* keyboard events

1. key down event
2. key up event

More text here.

If you use tabs for indentation within lists, please make sure that TAB_SIZE in the configuration file is set to the
correct tab size.

You can end a list by starting a new paragraph or by putting a dot (.) on an empty line at the same indentation
level as the list you would like to end.

Here is an example that speaks for itself:

/ *x
* Text before the list
* — list item 1

* - sub item 1

40 Lists

- sub sub item 1
- sub sub item 2

The dot above ends the sub sub item list.
More text for the first sub item

The dot above ends the first sub item.

More text for the first list item

- sub item 2

- sub item 3

- list item 2

More text in the same paragraph.

L S T S N S S S S ST S

* More text in a new paragraph.

*/

Using HTML commands

If you like you can also use HTML commands inside the documentation blocks.
Here is the above example with HTML commands:

A list of events:

 mouse events

mouse move event
mouse click event

More info about the click event.

mouse double click event

 keyboard events

key down event
key up event

More text here.

* %k X o ok kX

L S R S S . S N

Note

In this case the indentation is not important.

Using \arg or \li

For compatibility with the Qt Software's internal documentation tool qdoc and with KDoc, doxygen has two
commands that can be used to create simple unnested lists.

See \arg and \li for more info.

Generated by Doxygen 1.8.10.1

Chapter 7
Grouping

Doxygen has three mechanisms to group things together. One mechanism works at a global level, creating a new
page for each group. These groups are called 'modules' in the documentation. The second mechanism works within
a member list of some compound entity, and is referred to as a 'member groups'. For pages there is a third grouping
mechanism referred to as subpaging.

7.1 Modules

Modules are a way to group things together on a separate page. You can document a group as a whole, as well
as all individual members. Members of a group can be files, namespaces, classes, functions, variables, enums,
typedefs, and defines, but also other groups.

To define a group, you should put the \defgroup command in a special comment block. The first argument of the
command is a label that should uniquely identify the group. The second argument is the name or title of the group
as it should appear in the documentation.

You can make an entity a member of a specific group by putting a \ingroup command inside its documentation
block.

To avoid putting \ingroup commands in the documentation for each member you can also group members
together by the open marker @ { before the group and the closing marker @} after the group. The markers can be
put in the documentation of the group definition or in a separate documentation block.

Groups themselves can also be nested using these grouping markers.

You will get an error message when you use the same group label more than once. If you don't want doxygen
to enforce unique labels, then you can use \addtogroup instead of \defgroup. It can be used exactly like \defgroup,
but when the group has been defined already, then it silently merges the existing documentation with the new one.
The title of the group is optional for this command, so you can use

/xx \addtogroup <label>
* Q{
*/

[Hx% Q}*/

to add additional members to a group that is defined in more detail elsewhere.

Note that compound entities (like classes, files and namespaces) can be put into multiple groups, but members
(like variable, functions, typedefs and enums) can only be a member of one group (this restriction is in place to avoid
ambiguous linking targets in case a member is not documented in the context of its class, namespace or file, but
only visible as part of a group).

Doxygen will put members into the group whose definition has the highest "priority": e.g. An explicit \ingroup
overrides an implicit grouping definition via @ { @}. Conflicting grouping definitions with the same priority trigger a
warning, unless one definition was for a member without any explicit documentation.

The following example puts VarlnA into group A and silently resolves the conflict for IntegerVariable by putting it
into group IntVariables, because the second instance of IntegerVariable is undocumented:

/ * %
* \ingroup A
*/

extern int VarInA;

42 Grouping

/ * %

+ \defgroup IntVariables Global integer variables
* @

*/

/%% an integer variable =/
extern int IntegerVariable;

/xxQ@}*/

/ *x

* \defgroup Variables Global variables
«/

/xx@{x/

/*+ a variable in group A */
int VarInA;

int IntegerVariable;
/x%x@}x/

The \ref command can be used to refer to a group. The first argument of the \ref command should be group's
label. To use a custom link name, you can put the name of the links in double quotes after the label, as shown by
the following example

This is the \ref group_label "link" to this group.

The priorities of grouping definitions are (from highest to lowest): \ingroup, \defgroup, \addtogroup, \weakgroup.
The last command is exactly like \addtogroup with a lower priority. It was added to allow "lazy" grouping definitions:
you can use commands with a higher priority in your .h files to define the hierarchy and \weakgroup in .c files without
having to duplicate the hierarchy exactly.

Example:

/++ Q@defgroup groupl The First Group
x* This is the first group

* @

*/

/*% @brief class Cl in group 1 =/
class C1 {};

/*x @brief class C2 in group 1 =/
class C2 {};

/%% function in group 1 x/
void func() {}

/*% @} =/ // end of groupl

/ *

* @defgroup group2 The Second Group
* This is the second group

*/

/*% @defgroup group3 The Third Group
* This is the third group
*/

/** Q@defgroup group4 The Fourth Group
* @ingroup group3
* Group 4 is a subgroup of group 3

*/

/ *x

* @ingroup group2

* @brief class C3 in group 2
*/

class C3 {};

Generated by Doxygen 1.8.10.1

7.2 Member Groups 43

/*% @ingroup group2

* @brief class C4 in group 2
*/

class C4 {};

/** @ingroup group3

* @brief class C5 in @link group3 the third group@endlink.
*/

class C5 {};

/** Q@ingroup groupl group2 group3 group4

* namespace N1 is in four groups

% @sa @link groupl The first group@endlink, group2, group3, group4
*

* Also see @ref mypage2

*/

namespace N1 {};
/*% @file
* @ingroup group3
* @brief this file in group 3
*/
/** @defgroup group5 The Fifth Group
* This is the fifth group
* Qf
*/
/** @page mypagel This is a section in group 5
* Text of the first section
x/
/*x @page mypage2 This is another section in group 5
* Text of the second section
*/
/*x%x @} =/ // end of group5
/+% QRaddtogroup groupl
* More documentation for the first group.
* Qf
/** another function in group 1 x/

void func2() {}

/%% yet another function in group 1 */
void func3() {}

/*% @} =/ // end of groupl

7.2 Member Groups

If a compound (e.g. a class or file) has many members, it is often desired to group them together. Doxygen already
automatically groups things together on type and protection level, but maybe you feel that this is not enough or that
that default grouping is wrong. For instance, because you feel that members of different (syntactic) types belong to

the same (semantic) group.
A member group is defined by a

///@{
///@)
block or a
/xx@{*/

/xx@}x/

Generated by Doxygen 1.8.10.1

44 Grouping

block if you prefer C style comments. Note that the members of the group should be physically inside the member
group's body.

Before the opening marker of a block a separate comment block may be placed. This block should contain the
@name (or \name) command and is used to specify the header of the group. Optionally, the comment block may
also contain more detailed information about the group.

Nesting of member groups is not allowed.

If all members of a member group inside a class have the same type and protection level (for instance all are
static public members), then the whole member group is displayed as a subgroup of the type/protection level group
(the group is displayed as a subsection of the "Static Public Members" section for instance). If two or more members
have different types, then the group is put at the same level as the automatically generated groups. If you want to
force all member-groups of a class to be at the top level, you should put a \nosubgrouping command inside the
documentation of the class.

Example:

/x% A class. Details =/

class Test

{

public:

//@{
/*% Same documentation for both members. Details */
void funclInGroupl () ;
void func2InGroupl () ;
//@}

/** Function without group. Details. x/
void ungroupedFunction () ;
void funclInGroup2 () ;
protected:
void func2InGroup2 () ;
bi

void Test::funclInGroupl () {}
void Test::func2InGroupl () {}

/** @name Group2
* Description of group 2.
*/
///@{
/*% Function 2 in group 2. Details. x/
void Test::func2InGroup2 () {}
/*% Function 1 in group 2. Details. x/
void Test::funclInGroup2 () {}
///@}

/! \file
* docs for this file
x/

//1@{

//! one description for all members of this group

//! (because DISTRIBUTE_GROUP_DOC is YES in the config file)
#define A 1

#define B 2

void glob_func();

//'@}

Here Group1 is displayed as a subsection of the "Public Members". And Group2 is a separate section because
it contains members with different protection levels (i.e. public and protected).

7.3 Subpaging

Information can be grouped into pages using the \page and \mainpage commands. Normally, this results in a flat
list of pages, where the "main" page is the first in the list.

Instead of adding structure using the approach described in section modules it is often more natural and conve-
nient to add additional structure to the pages using the \subpage command.

Generated by Doxygen 1.8.10.1

7.3 Subpaging 45

For a page A the \subpage command adds a link to another page B and at the same time makes page B a
subpage of A. This has the effect of making two groups GA and GB, where GB is part of GA, page A is put in group
GA, and page B is put in group GB.

Generated by Doxygen 1.8.10.1

46

Grouping

Generated by Doxygen 1.8.10.1

Chapter 8

Including Formulas

Doxygen allows you to put IATEX formulas in the output (this works only for the HTML and IATEX output, not for the
RTF nor for the man page output). To be able to include formulas (as images) in the HTML documentation, you will
also need to have the following tools installed

+ latex: the IATEX compiler, needed to parse the formulas. To test | have used the teTeX 1.0 distribution.

» dvips: atool to convert DVI files to PostScript files | have used version 5.92b from Radical Eye software
for testing.

* gs: the GhostScript interpreter for converting PostScript files to bitmaps. | have used Aladdin GhostScript
8.0 for testing.

For the HTML output there is also an alternative solution using MathJax which does not require the above tools.
If you enable USE_MATHJAX in the config then the latex formulas will be copied to the HTML "as is" and a client
side javascript will parse them and turn them into (interactive) images.

There are three ways to include formulas in the documentation.

1. Using in-text formulas that appear in the running text. These formulas should be put between a pair of \f$
commands, so

The distance between \f$(x_1,y_1)\f$ and \f$(x_2,y_2)\f$ is
\fS\sgrt{(x_2-x_1)"2+(y_2-y_1)"2}\fs.

results in:

The distance between (x1,y1) and (x2,y2) is v/ (x2 —x1)2 + (y2 —y1).

2. Unnumbered displayed formulas that are centered on a separate line. These formulas should be put between
\f[and \f] commands. An example:

\Nf[
[I_2|=\1left| \int_{0}"T \psi(t)
\left\{
u(a,t)-
\int_{\gamma (t) }"a
\frac{d\theta}{k (\theta,t)}
\int_{a}”*\theta c(\xi)u_t (\xi,t)\,d\xi
\right\} dt
\right|
\f]
results in:

1= [v {uten - [0 [c@uEnag par

3. Formulas or other latex elements that are not in a math environment can be specified using \f{environment},
where environment is the name of the IATEX environment, the corresponding end command is \f}. Here is
an example for an equation array

http://www.mathjax.org

48 Including Formulas

\f{egnarray=} {
g &=& \frac{Gm_2}{r"2} \\
&=& \frac{(6.673 \times 10"{-11}\, \mbox{m}"3\, \mbox{kg}"{-1}\,
\mbox{s}*{-2}) (5.9736 \times 107{24}\, \mbox{kg}) }{(6371.01\, \mbox{km})"2} \\
&=& 9.82066032\, \mbox{m/s}"2
\f}

which results in:

. Chng
&8 =

(6.673 x 107''m3kg~!s72)(5.9736 x 10**kg)
(6371.01km)?2

= 9.82066032m/s’

For the first two commands one should make sure formulas contain valid commands in IATEX's math-mode. For the
third command the section should contain valid command for the specific environment.

Warning

Currently, doxygen is not very fault tolerant in recovering from typos in formulas. It may be necessary to remove
the file formula.repository thatis written to the html directory to get rid of an incorrect formula.

Generated by Doxygen 1.8.10.1

Chapter 9

Graphs and diagrams

Doxygen has built-in support to generate inheritance diagrams for C++ classes.

Doxygen can use the "dot" tool from graphviz to generate more advanced diagrams and graphs. Graphviz is an
open-source, cross-platform graph drawing toolkit and can be found at http: //www.graphviz.org/

If you have the "dot" tool in the path, you can set HAVE_DQOT to YES in the configuration file to let doxygen use

it.

Doxygen uses the "dot" tool to generate the following graphs:

A graphical representation of the class hierarchy will be drawn, along with the textual one. Currently this
feature is supported for HTML only.

Warning: When you have a very large class hierarchy where many classes derive from a common base
class, the resulting image may become too big to handle for some browsers.

An inheritance graph will be generated for each documented class showing the direct and indirect inheritance
relations. This disables the generation of the built-in class inheritance diagrams.

An include dependency graph is generated for each documented file that includes at least one other file. This
feature is currently supported for HTML and RTF only.

An inverse include dependency graph is also generated showing for a (header) file, which other files include
it.

A graph is drawn for each documented class and struct that shows:

— the inheritance relations with base classes.
— the usage relations with other structs and classes (e.g. class A has a member variable m_a of type
class B, then A has an arrow to B with m_a as label).

if CALL_GRAPH is set to YES, a graphical call graph is drawn for each function showing the functions that
the function directly or indirectly calls (see also section \callgraph and section \hidecallgraph).

if CALLER_GRAPH is set to YES, a graphical caller graph is drawn for each function showing the functions
that the function is directly or indirectly called by (see also section \callergraph and section \hidecallergraph).

Using a layout file you can determine which of the graphs are actually shown.

The options DOT_GRAPH_MAX_NODES and MAX_DOT_GRAPH_DEPTH can be used to limit the size of the
various graphs.

The elements in the class diagrams in HTML and RTF have the following meaning:

A yellow box indicates a class. A box can have a little marker in the lower right corner to indicate that the
class contains base classes that are hidden. For the class diagrams the maximum tree width is currently 8
elements. If a tree is wider some nodes will be hidden. If the box is filled with a dashed pattern the inheritance
relation is virtual.

A white box indicates that the documentation of the class is currently shown.
A gray box indicates an undocumented class.

A solid dark blue arrow indicates public inheritance.

http://www.graphviz.org/

50

Graphs and diagrams

» A dashed dark green arrow indicates protected inheritance.

» A dotted dark green arrow indicates private inheritance.

The elements in the class diagram in IATEX have the following meaning:

» A white box indicates a class. A marker in the lower right corner of the box indicates that the class has base
classes that are hidden. If the box has a dashed border this indicates virtual inheritance.

+ A solid arrow indicates public inheritance.
« A dashed arrow indicates protected inheritance.

» A dotted arrow indicates private inheritance.

The elements in the graphs generated by the dot tool have the following meaning:

A white box indicates a class or struct or file.

A box with a red border indicates a node that has more arrows than are shown! In other words: the graph
is truncated with respect to this node. The reason why a graph is sometimes truncated is to prevent images
from becoming too large. For the graphs generated with dot doxygen tries to limit the width of the resulting
image to 1024 pixels.

A black box indicates that the class' documentation is currently shown.

A dark blue arrow indicates an include relation (for the include dependency graph) or public inheritance (for
the other graphs).

A dark green arrow indicates protected inheritance.
A dark red arrow indicates private inheritance.

A purple dashed arrow indicated a "usage" relation, the edge of the arrow is labeled with the variable(s)
responsible for the relation. Class A uses class B, if class A has a member variable m of type C, where B is a
subtype of C (e.g. C could be B, Bx, Tx).

Here are a couple of header files that together show the various diagrams that doxygen can generate:
diagrams_a.h

#ifndef _DIAGRAMS_A_H

#define _DIAGRAMS_A_H

class A { public: A *m_self; };
#endif

diagrams_b.h

#ifndef _DIAGRAMS_B_H
#define _DIAGRAMS_B_H

class A;

class B { public: A *m_a; };
#endif

diagrams_c.h

#ifndef _DIAGRAMS_C_H

#define _DIAGRAMS_C_H

#include "diagrams_c.h"

class D;

class C : public A { public: D »m_d; };
#endif

diagrams_d.h

#ifndef _DIAGRAM_D_H

#define _DIAGRAM_D_H

#include "diagrams_a.h"

#include "diagrams_b.h"

class C;

class D : virtual protected A, private B { public: C m_c; };
#endif

diagrams_e.h

#ifndef _DIAGRAM_E_H
#define _DIAGRAM_E_H
#include "diagrams_d.h"
class E : public D {};
#endif

Generated by Doxygen 1.8.10.1

Chapter 10

Preprocessing

Source files that are used as input to doxygen can be parsed by doxygen's built-in C-preprocessor.
By default doxygen does only partial preprocessing. That is, it evaluates conditional compilation statements (like

#1 f) and evaluates macro definitions, but it does not perform macro expansion.
So if you have the following code fragment

#define VERSION 200
#define CONST_STRING const char =

#1if VERSION >= 200

static CONST_STRING version = "2.xx";
#else

static CONST_STRING version = "1.xx";
#endif

Then by default doxygen will feed the following to its parser:

#define VERSION
#define CONST_STRING

static CONST_STRING version = "2.xx";

You can disable all preprocessing by setting ENABLE_PREPROCESSING to NO in the configuration file. In the
case above doxygen will then read both statements, i.e.:

static CONST_STRING version = "2.xx";
static CONST_STRING version = "1.xx";

In case you want to expand the CONST_STRING macro, you should set the MACRO_EXPANSION tag in the
config file to YES. Then the result after preprocessing becomes:

#define VERSION
#define CONST_STRING

static const char * version = "1.xx";

Note that doxygen will now expand all macro definitions (recursively if needed). This is often too much. There-
fore, doxygen also allows you to expand only those defines that you explicitly specify. For this you have to set the
EXPAND_ONLY_PREDEEF tag to YES and specify the macro definitions after the PREDEFINED or EXPAND_A«
S_DEFINED tag.

A typically example where some help from the preprocessor is needed is when dealing with the language
extension from Microsoft: ___declspec. The same goes for GNU's __attribute___ extension. Here is an
example function.

extern "C" void __declspec(dllexport) ErrorMsg(String aMessage,...);

When nothing is done, doxygen will be confused and see ___declspec as some sort of function. To help
doxygen one typically uses the following preprocessor settings:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES

PREDEFINED = __declspec (x)=

52 Preprocessing

This will make sure the __declspec (dllexport) is removed before doxygen parses the source code.
Similar settings can be used for removing __attribute__ expressions from the input:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = __attribute_ (x)=

For a more complex example, suppose you have the following obfuscated code fragment of an abstract base
class called TUnknown:

/*! A reference to an IID =/
#ifdef __cplusplus

#define REFIID const IID &
#else

#define REFIID const IID =*
#endif

/+! The IUnknown interface */

DECLARE_INTERFACE (IUnknown)

{
STDMETHOD (HRESULT, QueryInterface) (THIS_ REFIID iid, void xxppv) PURE;
STDMETHOD (ULONG, AddRef) (THIS) PURE;
STDMETHOD (ULONG, Release) (THIS) PURE;

Vi

without macro expansion doxygen will get confused, but we may not want to expand the REFIID macro,
because it is documented and the user that reads the documentation should use it when implementing the interface.
By setting the following in the config file:

ENABLE_PREPROCESSING
MACRO_EXPANSION YES
EXPAND_ONLY_PREDEF YES
PREDEFINED = "DECLARE_INTERFACE (name)=class name" \
"STDMETHOD (result, name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \
__cplusplus

YES

we can make sure that the proper result is fed to doxygen's parser:

/*! A reference to an IID =/
#define REFIID

/*! The IUnknown interface */
class IUnknown
{

virtual HRESULT QueryInterface (REFIID iid, void *x*ppv) = 0;
virtual ULONG AddRef () = 0;
virtual ULONG Release () = 0;

bi

Note that the PREDEFINED tag accepts function like macro definitions (like DECLARE_INTERFACE), normal
macro substitutions (like PURE and THIS) and plain defines (like __cplusplus).

Note also that preprocessor definitions that are normally defined automatically by the preprocessor (like __ «
cplusplus), have to be defined by hand with doxygen's parser (this is done because these defines are often
platform/compiler specific).

In some cases you may want to substitute a macro name or function by something else without exposing the

result to further macro substitution. You can do this but using the : = operator instead of =
As an example suppose we have the following piece of code:

#define QList QListT
class QListT

{

bi

Then the only way to get doxygen interpret this as a class definition for class QL1 st is to define:

PREDEFINED = QListT:=QList

Generated by Doxygen 1.8.10.1

53

Here is an example provided by Valter Minute and Reyes Ponce that helps doxygen to wade through the boiler-
plate code in Microsoft's ATL & MFC libraries:

PREDEFINED = "DECLARE_INTERFACE (name)=class name" \
"STDMETHOD (result, name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \

DECLARE_REGISTRY_RESOURCEID=// \
DECLARE_PROTECT_FINAL_CONSTRUCT=// \
"DECLARE_AGGREGATABLE (Class)= " \
"DECLARE_REGISTRY_RESOURCEID (Id)= " \
DECLARE_MESSAGE_MAP= \
BEGIN_MESSAGE_MAP=/+ \
END_MESSAGE_MAP=x/// \
BEGIN_COM_MAP=/+ \
END_COM_MAP=x/// \
BEGIN_PROP_MAP=/~* \
END_PROP_MAP=x/// \
BEGIN_MSG_MAP=/* \
END_MSG_MAP=x/// \
BEGIN_PROPERTY_MAP=/% \
END_PROPERTY_MAP=+/// \
BEGIN_OBJECT_MAP=/x% \
END_OBJECT_MAP ()=«+/// \
DECLARE_VIEW_STATUS=// \
"STDMETHOD (a) =HRESULT a" \
"ATL_NO_VTABLE= " \
"__declspec(a)= " \
BEGIN_CONNECTION_POINT_MAP=/+* \
END_CONNECTION_POINT_MAP=x*/// \

"DECLARE_DYNAMIC (class)= " \
"IMPLEMENT_DYNAMIC (classl, class2)= " \
"DECLARE_DYNCREATE (class)= " \
"IMPLEMENT_DYNCREATE (classl, class2)= " \
"IMPLEMENT_SERIAL (classl, class2, class3)= " \
"DECLARE_MESSAGE_MAP ()= " \

TRY=try \

"CATCH_ALL(e)= catch(...)" \

END_CATCH_ALL= \

"THROW_LAST ()= throw"\

"RUNTIME_CLASS (class)=class" \
"MAKEINTRESOURCE (nId)=nId" \
"IMPLEMENT_REGISTER (v, w, x, y, z)= " \
"ASSERT (x)=assert (x)" \

"ASSERT_VALID (x)=assert (x)" \

"TRACEO (x)=printf (x)" \

"OS_ERR(A,B)={ #A, B }" \

__cplusplus \

"DECLARE_OLECREATE (class)= " \

"BEGIN_DISPATCH_MAP (classl, class2)= " \
"BEGIN_INTERFACE_MAP (classl, class2)= " \
"INTERFACE_PART (class, id, name)= " \
"END_INTERFACE_MAP ()=" \

"DISP_FUNCTION (class, name, function, result, id)=" \
"END_DISPATCH_MAP ()=" \

"IMPLEMENT_OLECREATE2 (class, name, idl, id2, id3, id4,\
id5, ide, id7, id8, id9, idl0, idil)="

As you can see doxygen's preprocessor is quite powerful, but if you want even more flexibility you can always

write an input filter and specify it after the INPUT_FILTER tag.
If you are unsure what the effect of doxygen's preprocessing will be you can run doxygen as follows:

doxygen —-d Preprocessor

This will instruct doxygen to dump the input sources to standard output after preprocessing has been done (Hint:
set QUIET = YES and WARNINGS = NO in the configuration file to disable any other output).

Generated by Doxygen 1.8.10.1

54

Preprocessing

Generated by Doxygen 1.8.10.1

Chapter 11

Automatic link generation

Most documentation systems have special ‘see also' sections where links to other pieces of documentation can be
inserted. Although doxygen also has a command to start such a section (See section \sa), it does allow you to
put these kind of links anywhere in the documentation. For IATEX documentation a reference to the page number
is written instead of a link. Furthermore, the index at the end of the document can be used to quickly find the
documentation of a member, class, namespace or file. For man pages no reference information is generated.

The next sections show how to generate links to the various documented entities in a source file.

11.1 Links to web pages and mail addresses

Doxygen will automatically replace any URLs and mail addresses found in the documentation by links (in HTML).
To manually specify link text, use the HTML 'a' tag:

1link text

which will be automatically translated to other output formats by Doxygen.

11.2 Links to classes

All words in the documentation that correspond to a documented class and contain at least one non-lower case
character will automatically be replaced by a link to the page containing the documentation of the class. If you want
to prevent that a word that corresponds to a documented class is replaced by a link you should put a % in front of
the word. To link to an all lower case symbol, use \ref.

11.3 Links to files

All words that contain a dot (.) that is not the last character in the word are considered to be file names. If the word
is indeed the name of a documented input file, a link will automatically be created to the documentation of that file.

11.4 Links to functions

Links to functions are created if one of the following patterns is encountered:
1. <functionName>" ("<argument-list>")"

2. <functionName>" ()"

3. "::"<functionName>
4. (<className>"::")"<functionName>" ("<argument-list>")"
5. (<className>"::")"<functionName>" ("<argument-1list>")"<modifiers>

6. (<className>"::")"<functionName>" ()"

56 Automatic link generation

7. (<className>"::")"<functionName>
where n>0.
Note 1:
Function arguments should be specified with correct types, i.e. 'fun(const std::string&,bool)" or '()' to match any
prototype.
Note 2:

Member function modifiers (like 'const' and 'volatile') are required to identify the target,
'fun(int)' target different member functions.

Note 3:
For JavaDoc compatibility a # may be used instead of a :: in the patterns above.

Note 4:

i.e. 'func(int) const' and

In the documentation of a class containing a member foo, a reference to a global variable is made using "::foo",

whereas #foo will link to the member.

For non overloaded members the argument list may be omitted.

If a function is overloaded and no matching argument list is specified (i.e. pattern 2 or
created to the documentation of one of the overloaded members.

For member functions the class scope (as used in patterns 4 to 7) may be omitted, if:

6 is used), a link will be

1. The pattern points to a documented member that belongs to the same class as the documentation block that

contains the pattern.

2. The class that corresponds to the documentation blocks that contains the pattern has a base class that

contains a documented member that matches the pattern.

11.5 Links to other members

All of these entities can be linked to in the same way as described in the previous section
advised to only use patterns 3 and 7 in this case.

Example:

/+! \file autolink.cpp
Testing automatic link generation.

A link to a member of the Test class: Test::member,

More specific links to the each of the overloaded members:
Test::member (int) and Test#member (int, int)

A link to a protected member variable of Test: Test#var,
A link to the global enumeration type #GlobEnum.

A link to the define #ABS(x).

A link to the destructor of the Test class: Test::~Test,
A link to the typedef ::B.

A link to the enumeration type Test::EType

A link to some enumeration values Test::Vall and ::GVal2
*/
/%!
Since this documentation block belongs to the class Test no link to

Test is generated.

Two ways to link to a constructor are: #Test and Test ().

. For sake of clarity it is

Generated by Doxygen 1.8.10.1

11.5 Links to other members

57

Links to the destructor are: #~Test and ~Test ().
A link to a member in this class: member ().

More specific links to the each of the overloaded members:
member (int) and member (int, int) .

A link to the variable #var.
A link to the global typedef ::B.
A link to the global enumeration type #GlobEnum.

A link to the define ABS(X) .

A link to a variable \link #var using another text\endlink as a link.

A link to the enumeration type #EType.

A link to some enumeration values: \link Test::Vall Vall \endlink and

And last but not least a link to a file: autolink.cpp.

\sa Inside a see also section any word is checked, so EType,
Vall, GvVall, ~Test and member will be replaced by links
*/

class Test

{

public:
Test (); //'< constructor
~Test () ; //!< destructor
void member (int) ; /*%< A member function. Details. =*/
void member (int, int); /**< An overloaded member function.

/** An enum type. More details */
enum EType {

vall, /**x< enum value 1 =*/
val2 /**< enum value 2 =%/
}i
protected:
int var; /*x< A member variable x/

bi

/*! details. =/
Test::Test () { }

/+! details. */
Test::~Test () { }

/x! A global variable. =/
int globVar;

/*! A global enum. */
enum GlobEnum {

Gvall, /*!< global enum value 1 */
Gval2 /*!< global enum value 2 */
bi
/%!
* A macro definition.
*/
#define ABS (x) (((x)>0)7?(x):—(x))

typedef Test B;

/*! \fn typedef Test B
* A type definition.
*/

in HTML.

Details x/

::GVall.

Generated by Doxygen 1.8.10.1

58 Automatic link generation

11.6 typedefs

Typedefs that involve classes, structs and unions, like

typedef struct StructName TypeName

create an alias for StructName, so links will be generated to StructName, when either StructName itself or Type«
Name is encountered.

Example:

/! \file restypedef.cpp
* An example of resolving typedefs.
*/

/*! \struct CoordStruct

% A coordinate pair.

*/

struct CoordStruct

{
/*! The x coordinate */
float x;
/+! The y coordinate =/
float vy;

bi

/*! Creates a type name for CoordStruct =/
typedef CoordStruct Coord;

/*!

+ This function returns the addition of \a cl and \a c2, i.e:
* (cl.x+c2.x,cl.y+c2.y)

*/

Coord add (Coord cl,Coord c2)

{

}

Generated by Doxygen 1.8.10.1

Chapter 12

Output Formats

The following output formats are directly supported by doxygen:

HTML Generated if GENERATE_HTML is set to YES in the configuration file.
IATEX Generated if GENERATE_LATEX is set to YES in the configuration file.
Man pages Generated if GENERATE_MAN is set to YES in the configuration file.

RTF Generated if GENERATE_RTF is set to YES in the configuration file.

Note that the RTF output probably only looks nice with Microsoft's Word. If you have success with other
programs, please let me know.

XML Generated if GENERATE_XML is set to YES in the configuration file.
Docbook Generated if GENERATE_DOCBOOOK is set to YES in the configuration file.
The following output formats are indirectly supported by doxygen:

Compiled HTML Help (a.k.a. Windows 98 help) Generated by Microsoft's HTML Help workshop from the HTML
output if GENERATE_HTMLHELP is set to YES.

Qt Compressed Help (.qch) Generated by Qt's ghelpgenerator tool from the HTML output if GENERATE_QHP
is setto YES.

Eclipse Help Generated from HTML with a special index file that is generated when GENERATE_ECLIPSEHELP
is setto YES.

XCode DocSets Compiled from HTML with a special index file that is generated when GENERATE_DOCSET is
setto YES.

PostScript Generated from the IATEX output by running make ps in the output directory. For the best results
PDF_HYPERLINKS should be set to NO.

PDF Generated from the IATEX output by running make pdf in the output directory. To improve the PDF out-
put, you typically would want to enable the use of pdflatex by setting USE_PDFLATEX to YES in the
configuration file. In order to get hyperlinks in the PDF file you also need to enable PDF_HYPERLINKS.

60

Output Formats

Generated by Doxygen 1.8.10.1

Chapter 13

Searching

Doxygen indexes your source code in various ways to make it easier to navigate and find what you are looking for.
There are also situations however where you want to search for something by keyword rather than browse for it.
HTML browsers by default have no search capabilities that work across multiple pages, so either doxygen or
external tools need to help to facilitate this feature.
Doxygen has 7 different ways to add searching to the HTML output, each of which has its own advantages and
disadvantages:

1. Client side searching

The easiest way to enable searching is to enable the built-in client side search engine. This engine is implemented
using Javascript and DHTML only and runs entirely on the clients browser. So no additional tooling is required to
make it work.

To enable it set SEARCHENGINE to YES in the config file and make sure SERVER_BASED_SEARCH is set to
NO.

An additional advantage of this method is that it provides live searching, i.e. the search results are presented
and adapted as you type.

This method also has its drawbacks: it is limited to searching for symbols only. It does not provide full text search
capabilities, and it does not scale well to very large projects (then searching becomes very slow).

2. Server side searching

If you plan to put the HTML documentation on a web server, and that web server has the capability to process PHP
code, then you can also use doxygen's built-in server side search engine.

To enable this set both SEARCHENGINE and SERVER_BASED_SEARCH to YES in the config file and set
EXTERNAL_SEARCH to NO.

Advantages over the client side search engine are that it provides full text search and it scales well to medium
side projects.

Disadvantages are that it does not work locally (i.e. using a "file://" URL) and that it does not provide live search
capabilities.

Note

In the future this option will probably be replaced by the next search option.

3. Server side searching with external indexing

With release 1.8.3 of doxygen, another server based search option has been added. With this option doxygen
generates the raw data that can be searched and leaves it up to external tools to do the indexing and searching,
meaning that you could use your own indexer and search engine of choice. To make life easier doxygen ships with
an example indexer (doxyindexer) and search engine (doxysearch.cgi) based on the Xapian open source search
engine library.

To enable this search method set SEARCHENGINE, SERVER_BASED_SEARCH and EXTERNAL_SEARCH
allto YES.

See External Indexing and Searching for configuration details.

http://xapian.org/

62 Searching

Advantages over option 2 are that this method (potentially) scales to very large projects. It is also possible to
combine multiple doxygen projects and external data into one search index. The way the interaction with the search
engine is done, makes it possible to search from local HTML pages. Also the search results have better ranking
and show context information (if available).

Disadvantages are that is requires a web server that can execute a CGl binary, and an additional indexing step
after running doxygen.

4. Windows Compiled HTML Help

If you are running doxygen on Windows, then you can make a compiled HTML Help file (.chm) out of the HTML files
produced by doxygen. This is a single file containing all HTML files and it also includes a search index. There are
viewers for this format on many platforms, and Windows even supports it natively.

To enable this set GENERATE_HTMLHELP to YES in the config file. To let doxygen compile the HTML Help file
for you, you also need to specify the path to the HTML compiler (hhc.exe) using the HHC_LOCATION config option
and the name of the resulting CHM file using CHM_FILE.

An advantage of this method is that the result is a single file that can easily be distributed. It also provides full
text search.

Disadvantages are that compiling the CHM file only works on Windows and requires Microsoft's HTML compiler,
which is not very actively supported by Microsoft. Although the tool works fine for most people, it can sometimes
crash for no apparent reason (how typical).

5. Mac OS X Doc Sets

If you are running doxygen on Mac OS X 10.5 or higher, then you can make a "doc set" out of the HTML files pro-
duced by doxygen. A doc set consists of a single directory with a special structure containing the HTML files along
with a precompiled search index. A doc set can be embedded in Xcode (the integrated development environment
provided by Apple).

To enable the creation of doc sets set GENERATE_DOCSET to YES in the config file. There are a couple of
other doc set related options you may want to set. After doxygen has finished you will find a Makefile in the HTML
output directory. Running "make install" on this Makefile will compile and install the doc set. See this article
for more info.

Advantage of this method is that it nicely integrates with the Xcode development environment, allowing for
instance to click on an identifier in the editor and jump to the corresponding section in the doxygen documentation.

Disadvantage is that it only works in combination with Xcode on MacOSX.

6. Qt Compressed Help

If you develop for or want to install the Qt application framework, you will get an application called Ot assistant.
This is a help viewer for Qt Compressed Help files (. gch).

To enable this feature set GENERATE_QHP to YES. You also need to fill in the other Qt help related options,
such as QHP_NAMESPACE, QHG_LOCATION, QHP_VIRTUAL_FOLDER. See this article for more info.

Feature wise the Qt compressed help feature is comparable with the CHM output, with the additional advantage
that compiling the QCH file is not limited to Windows.

Disadvantage is that it requires setting up a Qt 4.5 (or better) for each user, or distributing the Qt help assistant
along with the documentation, which is complicated by the fact that it is not available as a separate package at this
moment.

7. Eclipse Help Plugin

If you use eclipse, you can embed the documentation generated by doxygen as a help plugin. It will then appear
as a topic in the help browser that can be started from "Help contents" in the Help menu. Eclipse will generate a

search index for the documentation when you first search for a keyword.
To enable the help plugin set GENERATE_ECLIPSEHELP to YES, and define a unique identifier for your project
via ECLIPSE_DOC_ID, i.e.:

GENERATE_ECLIPSEHELP
ECLIPSE_DOC_ID

YES
com.yourcompany .yourproject

Generated by Doxygen 1.8.10.1

https://developer.apple.com/library/mac/#featuredarticles/DoxygenXcode/_index.html
http://qt-project.org/doc/qt-4.8/assistant-manual.html
http://doc.qt.digia.com/qq/qq28-qthelp.html#htmlfilesandhelpprojects

13.1 External Indexing and Searching 63

then create the com. yourcompany.yourproject directory (so with the same name as the value of ECLI«
PSE_DOC_1ID)inthe plugin directory of eclipse and after doxygen completes copy to contents of the help output
directory to the com. yourcompany.yourproject directory. Then restart eclipse to make let it find the new
plugin.

The eclipse help plugin provides similar functionality as the Qt compressed help or CHM output, but it does
require that Eclipse is installed and running.

13.1 External Indexing and Searching

13.1.1 Introduction

With release 1.8.3, doxygen provides the ability to search through HTML using an external indexing tool and search
engine. This has several advantages:

 For large projects it can have significant performance advantages over doxygen's built-in search engine, as
doxygen uses a rather simple indexing algorithm.

+ It allows combining the search data of multiple projects into one index, allowing a global search across multiple
doxygen projects.

+ It allows adding additional data to the search index, i.e. other web pages not produced by doxygen.
» The search engine needs to run on a web server, but clients can still browse the web pages locally.

To avoid that everyone has to start writing their own indexer and search engine, doxygen provides an example
tool for each action: doxyindexer for indexing the data and doxysearch.cgi for searching through the
index.

The data flow is shown in the following diagram:

doxysearch.db

doxysearch.cgi

HTML page
in browser

query

Figure 13.1: External Search Data Flow

+ doxygen produces the raw search data

+ doxyindexer indexes the data into a search database doxysearch.db

Generated by Doxygen 1.8.10.1

64 Searching

« when a user performs a search from a doxygen generated HTML page, the CGl binary doxysearch.cgi
will be invoked.

» the doxysearch.cgi tool will perform a query on the database and return the results.

» The browser will show the search results.

13.1.2 Configuring

The first step is to make the search engine available via a web server. If you use doxysearch.cgi this means
making the CGI binary available from the web server (i.e. be able to run it from a browser via an URL starting with
http:)

How to setup a web server is outside the scope of this document, but if you for instance have Apache installed,
you could simply copy the doxysearch.cgi file from doxygen's bin dir to the cgi-bin of the Apache web

server. Read the apache documentation for details.
To test if doxysearch.cgi is accessible start your web browser and point to URL to the binary and add
?test atthe end

http://yoursite.com/path/to/cgi/doxysearch.cgi?test
You should get the following message:

Test failed: cannot find search index doxysearch.db
If you use Internet Explorer you may be prompted to download a file, which will then contain this message.

Since we didn't create or install a doxysearch.db it is ok for the test to fail for this reason. How to correct this is

discussed in the next section.
Before continuing with the next section add the above URL (without the ?test part) to the SEARCHENGIN«
E_URL tag in doxygen's configuration file:

SEARCHENGINE_URL = http://yoursite.com/path/to/cgi/doxysearch.cgi

Single project index

To use the external search option, make sure the following options are enabled in doxygen's configuration file:

SEARCHENGINE = YES
SERVER_BASED_SEARCH = YES
EXTERNAL_SEARCH = YES

This will make doxygen generate a file called searchdata.xml in the output directory (configured with O«

UTPUT_DIRECTORY). You can change the file name (and location) with the SEARCHDATA_FILE option.
The next step is to put the raw search data into an index for efficient searching. You can use doxyindexer
for this. Simply run it from the command line:

doxyindexer searchdata.xml

This will create a directory called doxysearch . db with some files in it. By default the directory will be created
at the location from which doxyindexer was started, but you can change the directory using the —o option.

Copy the doxysearch.db directory to the same directory as where the doxysearch.cgi is located and
rerun the browser test by pointing the browser to
http://yoursite.com/path/to/cgi/doxysearch.cgi?test

You should now get the following message:

Test successful.

Now you should be enable to search for words and symbols from the HTML output.

Multi project index

In case you have more than one doxygen project and these projects are related, it may be desirable to allow

searching for words in all projects from within the documentation of any of the projects.
To make this possible all that is needed is to combine the search data for all projects into a single index, e.g. for
two projects A and B for which the searchdata.xml is generated in directories project_A and project_B run:

doxyindexer project_A/searchdata.xml project_B/searchdata.xml

Generated by Doxygen 1.8.10.1

http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://httpd.apache.org/docs/2.2/howto/cgi.html

13.1 External Indexing and Searching 65

and then copy the resulting doxysearch . db to the directory where also doxysearch.cgi is located.

The searchdata.xml file doesn't contain any absolute paths or links, so how can the search results from
multiple projects be linked back to the right documentation set? This is where the EXTERNAL_SEARCH_ID and
EXTRA_SEARCH_MAPPINGS options come into play.

To be able to identify the different projects, one needs to set a unique ID using EXTERNAL_SEARCH_ID for
each project.

To link the search results to the right project, you need to define a mapping per project using the EXTRA_SEA«
RCH_MAPPINGS tag. With this option to can define the mapping from IDs of other projects to the (relative) location

of documentation of those projects.
So for projects A and B the relevant part of the configuration file could look as follows:

project_A/Doxyfile
EXTERNAL_SEARCH_ID = A
EXTRA_SEARCH_MAPPINGS B=../../project_B/html

for project A and for project B

project_B/Doxyfile

EXTERNAL_SEARCH_ID =B
EXTRA_SEARCH_MAPPINGS = A=../../project_A/html

with these settings, projects A and B can share the same search database, and the search results will link to
the right documentation set.

13.1.3 Updating the index

When you modify the source code, you should re-run doxygen to get up to date documentation again. When using
external searching you also need to update the search index by re-running doxyindexer. You could wrap the
call to doxygen and doxyindexer together in a script to make this process easier.

13.1.4 Programming interface

Previous sections have assumed you use the tools doxyindexer and doxysearch.cgi to do the indexing
and searching, but you could also write your own index and search tools if you like.
For this 3 interfaces are important

» The format of the input for the index tool.
+ The format of the input for the search engine.
» The format of the output of search engine.

The next subsections describe these interfaces in more detail.

Indexer input format

The search data produced by doxygen follows the Solr XML index message format.
The input for the indexer is an XML file, which consists of one <add> tag containing multiple <doc> tags,

which in turn contain multiple <field> tags.
Here is an example of one doc node, which contains the search data and meta data for one method:

<add>
<doc>
<field name="type">function</field>
<field name="name">QXmlReader: :setDTDHandler</field>
<field name="args"> (QXmlDTDHandler xhandler)=0</field>
<field name="tag">gtools.tag</field>
<field name="url">de/df6/class_qg _xml_reader.html#aOb24blfe26a4c32a8032d68eeldd5dba</field>
<field name="keywords">setDTDHandler QXmlReader::setDTDHandler QXmlReader</field>

<field name="text">Sets the DTD handler to handler DTDHandler ()</field>
</doc>

</add>

Generated by Doxygen 1.8.10.1

http://wiki.apache.org/solr/UpdateXmlMessages

66 Searching

Each field has a name. The following field names are supported:

 type: the type of the search entry; can be one of: source, function, slot, signal, variable, typedef, enum,
enumvalue, property, event, related, friend, define, file, namespace, group, package, page, dir

name: the name of the search entry; for a method this is the qualified name of the method, for a class it is the
name of the class, etc.

args: the parameter list (in case of functions or methods)

tag: the name of the tag file used for this project.

url: the (relative) URL to the HTML documentation for this entry.

keywords: important words that are representative for the entry. When searching for such keyword, this entry
should get a higher rank in the search results.

text. the documentation associated with the item. Note that only words are present, no markup.

Note
Due to the potentially large size of the XML file, it is recommended to use a SAX based parser to process
it.

Search URL format

When the search engine is invoked from a doxygen generated HTML page, a number of parameters are passed to
viathe query string.
The following fields are passed:

» q: the query text as entered by the user

 n: the number of search results requested.

+ p: the number of search page for which to return the results. Each page has n values.

+ cb: the name of the callback function, used for JSON with padding, see the next section.

From the complete list of search results, the range [nxp — nx (p+1)-1] should be returned.
Here is an example of how a query looks like.

http://yoursite.com/path/to/cgi/doxysearch.cgi?g=list&n=20&p=1&cb=dummy

It represents a query for the word 'list' (q=11st) requesting 20 search results (n=20), starting with the result
number 20 (p=1) and using callback 'dummy’' (cb=dummy):

Note

The values are URL encoded so they have to be decoded before they can be used.

Search results format

When invoking the search engine as shown in the previous subsection, it should reply with the results. The format
of the reply is JSON with padding, which is basically a javascript struct wrapped in a function call. The name

of function should be the name of the callback (as passed with the cb field in the query).
With the example query as shown the previous subsection the main structure of the reply should look as follows:

dummy ({

"hits":179,
"first":20,
"count":20,
"pagevv . l,
"pages":9,
"query": "list",
"items": [

N

The fields have the following meaning:

Generated by Doxygen 1.8.10.1

http://en.wikipedia.org/wiki/Simple_API_for_XML
http://en.wikipedia.org/wiki/Query_string
http://en.wikipedia.org/wiki/Percent-encoding
http://en.wikipedia.org/wiki/JSONP

13.1 External Indexing and Searching 67

* hits: the total number of search results (could be more than was requested).
- first: the index of first result returned: min(n * p, hits).
« count. the actual number of results returned: min(n, hits — first)

» page: the page number of the result: p

@]

n

+ pages: the total number of pages: [

* jtems: an array containing the search data per result.

Here is an example of how the element of the ifems array should look like:

{"type": "function",
"name": "QDir::entryInfolist (const QString &nameFilter, int filterSpec=DefaultFilter, int sortSpec=DefaultSor
"tag": "gtools.tag",
"url": "d5/d8d/class_qg dir.html#a9439ea6b331957£38dbad981c4d050ef",
"fragments": [
"Returns a list of QFileInfo objects for all files and directories...",
"... pointer to a QFileInfolist The list is owned by the QDir object...",

. to keep the entries of the list after a subsequent call to this...

The fields for such an item have the following meaning:

« type: the type of the item, as found in the field with name "type" in the raw search data.

* name: the name of the item, including the parameter list, as found in the fields with name "name" and "args"
in the raw search data.

« tag: the name of the tag file, as found in the field with name "tag" in the raw search data.

« url: the name of the (relative) URL to the documentation, as found in the field with name "url" in the raw
search data.

"fragments": an array with 0 or more fragments of text containing words that have been search for. These
words should be wrapped in and tags to highlight them in the output.

Generated by Doxygen 1.8.10.1

68

Searching

Generated by Doxygen 1.8.10.1

Chapter 14

Customizing the Output

Doxygen provides various levels of customization. The section Minor Tweaks discusses what to do if you want to
do minor tweaking to the look and feel of the output. The section Layout show how to reorder and hide certain
information on a page. The section XML output show how to generate whatever output you want based on the XML

output produced by doxygen.

14.1 Minor Tweaks

The next subsections describe some aspects that can be tweaked with little effort.

14.1.1 Overall Color

To change the overall color of the HTML output doxygen provides three options
« HTML_COLORSTYLE_HUE
* HTML_COLORSTYLE_SAT
* HTML_COLORSTYLE_GAMMA

to change the hue, saturation, and gamma correction of the colors respectively.
For your convenience the GUI frontend Doxywizard has a control that allows you to see the effect of changing

the values of these options on the output in real time.

14.1.2 Navigation
By default doxygen shows navigation tabs on top of every HTML page, corresponding with the following settings:
» DISABLE_INDEX = NO
+ GENERATE_TREEVIEW = NO
you can switch to an interactive navigation tree as sidebar using
» DISABLE_INDEX = YES
+ GENERATE_TREEVIEW = YES
or even have both forms of navigation:
» DISABLE_INDEX = NO
+ GENERATE_TREEVIEW = YES

if you already use an external index (i.e. have one of the following options enabled GENERATE_HTMLHELP,
GENERATE_ECLIPSEHELP, GENERATE_QHP, or GENERATE_DOCSET) then you can also disable all indices,
like so:

« DISABLE_INDEX = YES
+ GENERATE_TREEVIEW = NO

70 Customizing the Output

14.1.3 Dynamic Content
To make the HTML output more interactive, doxygen provides a number of options that are disabled by default:

+ enabling HTML_DYNAMIC_SECTIONS will make doxygen hide certain content (like graphs) in the HTML by
default, and let the reader expand these sections on request.

+ enabling HAVE_DOT along with INTERACTIVE_SVG while setting DOT_IMAGE_FORMAT to svg, will make
doxygen produce SVG images that will allow the user to zoom and pan (this only happens when the size of
the images exceeds a certain size).

14.1.4 Header, Footer, and Stylesheet changes

To tweak things like fonts or colors, margins, or other look & feel aspects of the HTML output in detail, you can
create a different cascading style sheet. You can also let doxygen use a custom header and footer for
each HTML page it generates, for instance to make the output conform to the style used on the rest of your web

site.
To do this first run doxygen as follows:

doxygen -w html header.html footer.html customdoxygen.css
This will create 3 files:

 header.html is a HTML fragment which doxygen normally uses to start a HTML page. Note that the fragment
ends with a body tag and that is contains a couple of commands of the form $word. These will be replaced
by doxygen on the fly.

« footer.html is a HTML fragment which doxygen normally uses to end a HTML page. Also here special com-
mands can be used. This file contain the link to www.doxygen.org and the body and html end tags.

 customdoxygen.css is the default cascading style sheet used by doxygen. It is recommended only to look
into this file and overrule some settings you like by putting them in a separate stylesheets and referencing
those extra files via HTML_EXTRA_STYLESHEET.

You should edit these files and then reference them from the config file.
* HTML_HEADER = header.html
* HTML_FOOTER = footer.html

* HTML_EXTRA_STYLESHEET = my_customdoxygen.css

Note

it is not longer recommended to use HTML_STYLESHEET, as it make it difficult to upgrade to a newer version
of doxygen. Use HTML_EXTRA_STYLESHEET instead.

See the documentation of the HTML_HEADER tag for more information about the possible meta commands you
can use inside your custom header.

Note

You should not put the style sheet in the HTML output directory. Treat it as a source file. Doxygen will copy it
for you.

If you use images or other external content in a custom header you need to make sure these end up in the
HTML output directory yourself, for instance by writing a script that runs doxygen can then copies the images
to the output.

Warning

The structure of headers and footers may change after upgrading to a newer version of doxygen, so if you are
using a custom header or footer, it might not produce valid output anymore after upgrading.

Generated by Doxygen 1.8.10.1

http://www.w3schools.com/css/default.asp

14.2 Changing the layout of pages 71

14.2 Changing the layout of pages

In some cases you may want to change the way the output is structured. A different style sheet or custom headers
and footers do not help in such case.

The solution doxygen provides is a layout file, which you can modify and doxygen will use to control what
information is presented, in which order, and to some extent also how information is presented. The layout file is an

XML file.
The default layout can be generated by doxygen using the following command:

doxygen -1

optionally the name of the layout file can be specified, if omitted DoxygenLayout . xm1 will be used.
The next step is to mention the layout file in the config file

LAYOUT_FILE = DoxygenLayout.xml

To change the layout all you need to do is edit the layout file.
The toplevel structure of the file looks as follows:

<doxygenlayout version="1.0">
<navindex>

</navindex>
<class>
</class>
<namespace>

</namespace>
<file>

</file>
<group>
</group>
<directory>

</directory>
</doxygenlayout>

The root element of the XML file is doxygenlayout, it has an attribute named version, which will be used
in the future to cope with changes that are not backward compatible.

The first section, identified by the navindex element, represents the layout of the navigation tabs displayed at
the top of each HTML page. At the same time it also controls the items in the navigation tree in case GENERAT
E_TREEVIEW is enabled. Each tab is represented by a t ab element in the XML file.

You can hide tabs by setting the visible attribute to no. You can also override the default title of a tab by
specifying it as the value of the t it 1e attribute. If the title field is the empty string (the default) then doxygen will
fill in an appropriate language specific title.

You can reorder the tabs by moving the tab elements in the XML file within the navindex element and even
change the tree structure. Do not change the value of the t ype attribute however. Only a fixed set of types are
supported, each representing a link to a specific index.

You can also add custom tabs using a type with name "user". Here is an example that shows how to add a tab
with title "Google" pointing to www.google.com:

<navindex>
<tab type="user" url="http://www.google.com" title="Google"/>
</5;;index>
The url field can also be a relative URL. If the URL starts with @ref the link will point to a documented entities,

such as a class, a function, a group, or a related page. Suppose we have defined a page using @page with label
mypage, then a tab with label "My Page" to this page would look as follows:

<navindex>
<tab type="user" url="Qref mypage" title="My Page"/>

</navindex>

Generated by Doxygen 1.8.10.1

72 Customizing the Output

You can also group tabs together in a custom group using a tab with type "usergroup". The following example
puts the above tabs in a user defined group with title "My Group":

<navindex>
<tab type="usergroup" title="My Group">
<tab type="user" url="http://www.google.com" title="Google"/>
<tab type="user" url="Qref mypage" title="My Page"/>
</tab>
</navindex>
Groups can be nested to form a hierarchy.
By default a usergroup entry in the navigation tree is a link to a landing page with the contents of the group. You

can link to a different page using the ur1 attribute just like you can for the <tab> element and prevent any link
usingurl="[none]",i.e.

<tab type="usergroup" title="Group without 1link" url="[none]">
</tab>
The elements after navindex represent the layout of the different pages generated by doxygen:

» The class element represents the layout of all pages generated for documented classes, structs, unions,
and interfaces.

» The namespace element represents the layout of all pages generated for documented namespaces (and
also Java packages).

» The file element represents the layout of all pages generated for documented files.
» The group element represents the layout of all pages generated for documented groups (or modules).
« The directory element represents the layout of all pages generated for documented directories.

Each XML element within one of the above page elements represents a certain piece of information. Some
pieces can appear in each type of page, others are specific for a certain type of page. Doxygen will list the pieces
in the order in which they appear in the XML file.

The following generic elements are possible for each page:

briefdescription Represents the brief description on a page.
detaileddescription Represents the detailed description on a page.
authorsection Represents the author section of a page (only used for man pages).

memberdecl Represents the quick overview of members on a page (member declarations). This elements has
child elements per type of member list. The possible child elements are not listed in detail in the document,
but the name of the element should be a good indication of the type of members that the element represents.

memberdef Represents the detailed member list on a page (member definition). Like the memberdecl ele-
ment, also this element has a number of possible child elements.

The class page has the following specific elements:
includes Represents the include file needed to obtain the definition for this class.

inheritancegraph Represents the inheritance relations for a class. Note that the CLASS_DIAGRAM option
determines if the inheritance relation is a list of base and derived classes or a graph.

collaborationgraph Represents the collaboration graph for a class.

allmemberslink Represents the link to the list of all members for a class.

usedfiles Represents the list of files from which documentation for the class was extracted.
The file page has the following specific elements:

includes Represents the list of #include statements contained in this file.

Generated by Doxygen 1.8.10.1

14.3 Using the XML output 73

includegraph Represents the include dependency graph for the file.
includedbygraph Represents the included by dependency graph for the file.
sourcelink Represents the link to the source code of this file.

The group page has a specific groupgraph element which represents the graph showing the dependencies
between groups.
Similarly, the directory page has a specific directorygraph element which represents the graph showing

the dependencies between the directories based on the #include relations of the files inside the directories.

Some elements have a visible attribute which can be used to hide the fragment from the generated output,
by setting the attribute's value to "no". You can also use the value of a configuration option to determine the visibility,
by using its name prefixed with a dollar sign, e.g.

<includes visible="$SHOW_INCLUDE_FILES"/>

This was mainly added for backward compatibility. Note that the visible attribute is just a hint for doxygen. If no
relevant information is available for a certain piece it is omitted even if it is set to yes (i.e. no empty sections are
generated).

Some elements have a t it 1e attribute. This attribute can be used to customize the title doxygen will use as a
header for the piece.

Warning

at the moment you should not remove elements from the layout file as a way to hide information. Doing so can
cause broken links in the generated output!

14.3 Using the XML output

If the above two methods still do not provide enough flexibility, you can also use the XML output produced by
doxygen as a basis to generate the output you like. To do this set GENERATE_XML to YES.

The XML output consists of an index file named index.xml which lists all items extracted by doxygen with
references to the other XML files for details. The structure of the index is described by a schema file index . xsd.
All other XML files are described by the schema file named compound.xsd. If you prefer one big XML file you
can combine the index and the other files using the XSLT file combine.xs1t.

You can use any XML parser to parse the file or use the one that can be found in the addon/doxmlparser
directory of doxygen source distribution. Look at addon/doxmlparser/include/doxmlintf.h for the
interface of the parser and in addon/doxmlparser/example for examples.

The advantage of using the doxmlparser is that it will only read the index file into memory and then only those
XML files that you implicitly load via navigating through the index. As a result this works even for very large projects
where reading all XML files as one big DOM tree would not fit into memory.

See the Breathe project for an example that uses doxygen XML output from Python to bridge it with
the Sphinx document generator.

Generated by Doxygen 1.8.10.1

https://github.com/michaeljones/breathe
http://sphinx.pocoo.org/

74

Customizing the Output

Generated by Doxygen 1.8.10.1

Chapter 15

Custom Commands

Doxygen provides a large number of special commands, XML commands, and HTML commands. that can be used
to enhance or structure the documentation inside a comment block. If you for some reason have a need to define
new commands you can do so by means of an alias definition.

The definition of an alias should be specified in the configuration file using the ALIASES configuration tag.

15.1 Simple aliases

The simplest form of an alias is a simple substitution of the form
name=value
For example defining the following alias:

ALIASES += sideeffect="\par Side Effects:\n"

will allow you to put the command \sideeffect (or @sideeffect) in the documentation, which will result in
a user-defined paragraph with heading Side Effects:.

Note that you can put \n's in the value part of an alias to insert newlines.

Also note that you can redefine existing special commands if you wish.

Some commands, such as \xrefitem are designed to be used in combination with aliases.

15.2 Aliases with arguments

Aliases can also have one or more arguments. In the alias definition you then need to specify the number of
arguments between curly braces. In the value part of the definition you can place \ x markers, where 'x' represents

the argument number starting with 1.
Here is an example of an alias definition with a single argument:

ALIASES += 1{1}="\ref \1"
Inside a comment block you can use it as follows
/x* See \1{SomeClass} for more information. =/
which would be the same as writing
/*% See \ref SomeClass for more information. =/
Note that you can overload an alias by a version with multiple arguments, for instance:

ALIASES += 1{1}="\ref \1"
ALIASES += 1{2}="\ref \1 \"\2\""

Note that the quotes inside the alias definition have to be escaped with a backslash.
With these alias definitions, we can write

/*% See \1l{SomeClass, Some Text} for more information. =/
inside the comment block and it will expand to

/*+ See \ref SomeClass "Some Text" for more information. =*/

76 Custom Commands

where the command with a single argument would still work as shown before.
Aliases can also be expressed in terms of other aliases, e.g. a new command \ reminder can be expressed
as a \xrefitem via an intermediate \xref1ist command as follows:

ALIASES += xreflist{3}="\xrefitem \1 \"\2\" \"\3\" "
ALIASES += reminder="\xreflist{reminders,Reminder, Reminders}"

Note that if for aliases with more than one argument a comma is used as a separator, if you want to put a comma
inside the command, you will need to escape it with a backslash, i.e.

\1l{SomeClass, Some text\, with an escaped comma}

given the alias definition of \ 1 in the example above.

15.3 Nesting custom command

You can use commands as arguments of aliases, including commands defined using aliases.
As an example consider the following alias definitions

ALIASES += Bold{1l}="\1"
ALIASES += Emph{l}="\1"

Inside a comment block you can now use:
/x% This is a \Bold{bold \Emph{and} Emphasized} text fragment. */
which will expand to

/*% This is a bold and Emphasized text fragment. =/

Generated by Doxygen 1.8.10.1

Chapter 16

Link to external documentation

If your project depends on external libraries or tools, there are several reasons to not include all sources for these
with every run of doxygen:

Disk space: Some documentation may be available outside of the output directory of doxygen already, for instance
somewhere on the web. You may want to link to these pages instead of generating the documentation in your
local output directory.

Compilation speed: External projects typically have a different update frequency from your own project. It does
not make much sense to let doxygen parse the sources for these external project over and over again, even
if nothing has changed.

Memory: For very large source trees, letting doxygen parse all sources may simply take too much of your system's
memory. By dividing the sources into several "packages"”, the sources of one package can be parsed by
doxygen, while all other packages that this package depends on, are linked in externally. This saves a lot of
memory.

Availability: For some projects that are documented with doxygen, the sources may just not be available.

Copyright issues: If the external package and its documentation are copyright someone else, it may be better - or
even necessary - to reference it rather than include a copy of it with your project's documentation. When the
author forbids redistribution, this is necessary. If the author requires compliance with some license condition
as a precondition of redistribution, and you do not want to be bound by those conditions, referring to their
copy of their documentation is preferable to including a copy.

If any of the above apply, you can use doxygen's tag file mechanism. A tag file is basically a compact represen-
tation of the entities found in the external sources. Doxygen can both generate and read tag files.

To generate a tag file for your project, simply put the name of the tag file after the GENERATE_TAGFILE option
in the configuration file.

To combine the output of one or more external projects with your own project you should specify the name of
the tag files after the TAGFILES option in the configuration file.

A tag file typically only contains a relative location of the documentation from the point where doxygen was run.
So when you include a tag file in other project you have to specify where the external documentation is located
in relation this project. You can do this in the configuration file by assigning the (relative) location to the tag files
specified after the TAGFILES configuration option. If you use a relative path it should be relative with respect to the
directory where the HTML output of your project is generated; so a relative path from the HTML output directory of
a project to the HTML output of the other project that is linked to.

Example:

Suppose you have a project proj that uses two external projects called ext1 and ext2. The directory
structure looks as follows:

<root>
+- proj
| +- html HTML output directory for proj
| +- src sources for proj

| |- proj.cpp

78

Link to external documentation

+- extl

| +— html

| |- extl.tag
+- ext2

| +- html

| |- ext2.tag
|- proj.cfg

|- extl.cfg

|- ext2.cfg

HTML output directory
tag file for extl

HTML output directory
tag file for ext2

doxygen configuration
doxygen configuration
doxygen configuration

for extl

for ext2

file for proj
file for extl
file for ext2

Then the relevant parts of the configuration files look as follows:

proj.cfg:

OUTPUT_DIRECTORY
INPUT
TAGFILES

ext1.cfg:

OUTPUT_DIRECTORY
GENERATE_TAGFILE

ext2.cfg:

OUTPUT_DIRECTORY
GENERATE_TAGFILE

= proj

proj/src

extl/extl.tag=../../extl/html \

ext2/ext2.tag=../../ext2/html

= extl

extl/extl.tag

ext2
ext2/ext2.tag

Generated by Doxygen 1.8.10.1

Chapter 17

Frequently Asked Questions

17.1 How to get information on the index page in HTML?

You should use the \mainpage command inside a comment block like this:
/*! \mainpage My Personal Index Page

: \section intro_sec Introduction

This is the introduction.

\section install_sec Installation

\subsection stepl Step 1l: Opening the box

*
*
*
*
*
*
*
*

* etc...

*/

17.2 Help, some/all of the members of my class / file / namespace are not
documented?

Check the following:

1. Is your class / file / namespace documented? If not, it will not be extracted from the sources unless EXTR«
ACT_ALL is set to YES in the config file.

2. Are the members private? If so, you must set EXTRACT_PRIVATE to YES to make them appear in the
documentation.

3. Is there a function macro in your class that does not end with a semicolon (e.g. MY_MACRO())? If so then
you have to instruct doxygen's preprocessor to remove it.

This typically boils down to the following settings in the config file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = MY_MACRO ()=

Please read the preprocessing section of the manual for more information.

17.3 When | set EXTRACT_ALL to NO none of my functions are shown in
the documentation.

In order for global functions, variables, enums, typedefs, and defines to be documented you should document the
file in which these commands are located using a comment block containing a \file (or @file) command.

80 Frequently Asked Questions

Alternatively, you can put all members in a group (or module) using the \ingroup command and then document
the group using a comment block containing the \defgroup command.

For member functions or functions that are part of a namespace you should document either the class or
namespace.

17.4 My file with a custom extension is not parsed (properly) (anymore).

Doxygen only parses files that are specified as input (via the INPUT tag) and that match a specified extension
(mentioned in FILE_PATTERNS) The list of files is then reduced by excluding files listed as EXCLUDE or files that
match the patterns set by EXCLUDE_PATTERNS.

In the past doxygen parsed all files with an unknown extension as C files which could lead to undesired results.
Since version 1.8.8, doxygen requires that you specify a mapping that tells for a certain file extension, which parser
to use. This mapping is specified using the EXTENSION_MAPPING tag. If no mapping is specified the file's
contents will be ignored.

17.5 How can | make doxygen ighore some code fragment?

The new and easiest way is to add one comment block with a \cond command at the start and one comment block
with a \endcond command at the end of the piece of code that should be ignored. This should be within the same

file of course.
But you can also use Doxygen's preprocessor for this: If you put

#ifndef DOXYGEN_SHOULD_SKIP_THIS

/* code that must be skipped by Doxygen =*/
#endif /+ DOXYGEN_SHOULD_SKIP_THIS */
around the blocks that should be hidden and put:

PREDEFINED = DOXYGEN_SHOULD_SKIP_THIS

in the config file then all blocks should be skipped by Doxygen as long as ENABLE_PREPROCESSING is set to
YES.

17.6 How can | change what is after the <code>#include</code> in the
class documentation?

In most cases you can use STRIP_FROM_INC_PATH to strip a user defined part of a path.
You can also document your class as follows

/+! \class MyClassName include.h path/include.h

*
* Docs for MyClassName

*/
To make doxygen put

#include <path/include.h>
in the documentation of the class MyClassName regardless of the name of the actual header file in which the
definition of MyClassName is contained.

If you want doxygen to show that the include file should be included using quotes instead of angle brackets you
should type:

/*! \class MyClassName myhdr.h "path/myhdr.h"
*
* Docs for MyClassName

*/

Generated by Doxygen 1.8.10.1

17.7 How can | use tag files in combination with compressed HTML? 81

17.7 How can | use tag files in combination with compressed HTML?

If you want to refer from one compressed HTML file a . chm to another compressed HTML file called b . chm, the
link in a . chm must have the following format:

Unfortunately this only works if both compressed HTML files are in the same directory.

As a result you must rename the generated index . chm files for all projects into something unique and put all
. chm files in one directory.

Suppose you have a project a referring to a project b using tag file b.tag, then you could rename the

index.chm for project a into a.chm and the index.chm for project b into b.chm. In the configuration file
for project a you write:

TAGFILES = b.tag=b.chm::

17.8 |don't like the quick index that is put above each HTML page, what
do 1 do?

You can disable the index by setting DISABLE_INDEX to YES. Then you can put in your own header file by writing
your own header and feed that to HTML_HEADER.

17.9 The overall HTML output looks different, while | only wanted to use
my own html header file

You probably forgot to include the stylesheet doxygen.css that doxygen generates. You can include this by
putting

<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">

in the HEAD section of the HTML page.

17.10 Why does doxygen use Qt?

The most important reason is to have a platform abstraction for most Unices and Windows by means of the QFile,
QFileInfo, QDir, QDate, QTime and QIODevice classes. Another reason is for the nice and bug free utility classes,
like QList, QDict, QString, QArray, QTextStream, QRegExp, QXML etc.

The GUI front-end doxywizard uses Qt for... well... the GUI!

17.11 How can | exclude all test directories from my directory tree?
Simply put an exclude pattern like this in the configuration file:

EXCLUDE_PATTERNS = */test/x*

17.12 Doxygen automatically generates a link to the class MyClass some-
where in the running text. How do | prevent that at a certain place?

Put a % in front of the class name. Like this: %MyClass. Doxygen will then remove the % and keep the word
unlinked.

Generated by Doxygen 1.8.10.1

82 Frequently Asked Questions

17.13 My favorite programming language is X. Can | still use doxygen?

No, not as such; doxygen needs to understand the structure of what it reads. If you don't mind spending some time
on it, there are several options:

« If the grammar of X is close to C or C++, then it is probably not too hard to tweak src/scanner.| a bit so the
language is supported. This is done for all other languages directly supported by doxygen (i.e. Java, IDL, C#,
PHP).

« If the grammar of X is somewhat different than you can write an input filter that translates X into some-
thing similar enough to C/C++ for doxygen to understand (this approach is taken for VB, Object Pascal, and
Javascript, see http://www.stack.nl/~dimitri/doxygen/download.html#helpers).

« If the grammar is completely different one could write a parser for X and write a backend that produces a
similar syntax tree as is done by src/scanner.l (and also by src/tagreader.cpp while reading tag files).

17.14 Help! | get the cryptic message "input buffer overflow, can't enlarge
buffer because scanner uses REJECT"

This error happens when doxygen's lexical scanner has a rule that matches more than 256K of input characters
in one go. I've seen this happening on a very large generated file (>256K lines), where the built-in preprocessor
converted it into an empty file (with >256K of newlines). Another case where this might happen is if you have lines
in your code with more than 256K characters.

If you have run into such a case and want me to fix it, you should send me a code fragment that triggers the
message. To work around the problem, put some line-breaks into your file, split it up into smaller parts, or exclude
it from the input using EXCLUDE.

17.15 When running make in the latex dir | get "TeX capacity exceeded".
Now what?

You can edit the texmf.cfg file to increase the default values of the various buffers and then run "texconfig init".

17.16 Why are dependencies via STL classes not shown in the dot
graphs?

Doxygen is unaware of the STL classes, unless the option BUILTIN_STL_SUPPORT is turned on.

17.17 |have problems getting the search engine to work with PHP5 and/or
windows

Please read t his for hints on where to look.

17.18 Can | configure doxygen from the command line?

Not via command line options, but doxygen can read from stdin, so you can pipe things through it. Here's an ex-
ample how to override an option in a configuration file from the command line (assuming a UNIX like environment):

(cat Doxyfile ; echo "PROJECT_NUMBER=1.0") | doxygen -
For Windows the following would do the same:

(type Doxyfile & echo PROJECT_NUMBER=1.0) | doxygen.exe -

If multiple options with the same name are specified then doxygen will use the last one. To append to an existing
option you can use the += operator.

Generated by Doxygen 1.8.10.1

http://www.stack.nl/~dimitri/doxygen/download.html#helpers
searchengine.html

17.19 How did doxygen get its name? 83

17.19 How did doxygen get its name?

Doxygen got its name from playing with the words documentation and generator.

documentation -> docs -> dox
generator —-> gen

At the time | was looking into 1ex and yacc, where a lot of things start with "yy", so the "y" slipped in and made
things pronounceable (the proper pronouncement is Docs-ee-gen, so with a long "e").

17.20 What was the reason to develop doxygen?

| once wrote a GUI widget based on the Qt library (it is still available at http://sourceforge.«
net/projects/gdbttabular/ buthasn't been updated since 2002). Qt had nicely generated documentation
(using an internal tool which they didn't want to release)and | wrote similar docs by hand. This was
a nightmare to maintain, so | wanted a similar tool. | looked at Doc++ but that just wasn't good enough (it didn't
support signals and slots and did not have the Qt look and feel | had grown to like), so | started to write my own
tool...

Generated by Doxygen 1.8.10.1

http://sourceforge.net/projects/qdbttabular/
http://sourceforge.net/projects/qdbttabular/
http://rant.gulbrandsen.priv.no/udoc/history

84

Frequently Asked Questions

Generated by Doxygen 1.8.10.1

Chapter 18

Troubleshooting

18.1

Known Problems

Doxygen is not a real compiler, it is only a lexical scanner. This means that it can and will not detect errors in
your source code.

Doxygen has a build in preprocessor, but this works slightly different than the C preprocessor. Doxygen
assumes a header file is properly guarded against multiple inclusion, and that each include file is standalone
(i.e. it could be placed at the top of a source file without causing compiler errors). As long as this is true (and
this is a good design practice) you should not encounter problems.

Since it is impossible to test all possible code fragments, it is very well possible, that some valid piece of C/«
C++ code is not handled properly. If you find such a piece, please send it to me, so | can improve doxygen's
parsing capabilities. Try to make the piece of code you send as small as possible, to help me narrow down
the search.

Doxygen does not work properly if there are multiple classes, structs or unions with the same name in your
code. It should not crash however, rather it should ignore all of the classes with the same name except one.

Some commands do not work inside the arguments of other commands. Inside a HTML link (i.«
e. ...<a>) for instance other commands (including other HTML commands) do not work!
The sectioning commands are an important exception.

Redundant braces can confuse doxygen in some cases. For example:
void £ (int);

is properly parsed as a function declaration, but
const int (a);

is also seen as a function declaration with name int, because only the syntax is analyzed, not the semantics.
If the redundant braces can be detected, as in

int x(a[20]);

then doxygen will remove the braces and correctly parse the result.

Not all names in code fragments that are included in the documentation are replaced by links (for instance
when using SOURCE_BROWSER = YES) and links to overloaded members may point to the wrong member.
This also holds for the "Referenced by" list that is generated for each function.

For a part this is because the code parser isn't smart enough at the moment. I'll try to improve this in the future.
But even with these improvements not everything can be properly linked to the corresponding documentation,
because of possible ambiguities or lack of information about the context in which the code fragment is found.

It is not possible to insert a non-member function f in a class A using the \relates or \relatesalso command, if
class A already has a member with name f and the same argument list.

86 Troubleshooting

+ There is only very limited support for member specialization at the moment. It only works if there is a special-
ized template class as well.

+ Not all special commands are properly translated to RTF.

» Version 1.8.6 of dot (and maybe earlier versions too) do not generate proper map files, causing the graphs
that doxygen generates not to be properly clickable.

» PHP only: Doxygen requires that all PHP statements (i.e. code) is wrapped in a functions/methods, otherwise
you may run into parse problems.

18.2 How to Help

The development of Doxygen highly depends on your input!
If you are trying Doxygen let me know what you think of it (do you miss certain features?). Even if you decide
not to use it, please let me know why.

18.3 How to report a bug

Bugs are tracked in GNOME's bugzi11la database. Before submitting a new bug, first search through the
database if the same bug has already been submitted by others (the doxygen product will be preselected). If you
believe you have found a new bug, please report it.

If you are unsure whether or not something is a bug, please ask help on the users mailing list first
(subscription is required).

If you send only a (vague) description of a bug, you are usually not very helpful and it will cost me much more
time to figure out what you mean. In the worst-case your bug report may even be completely ignored by me, so
always try to include the following information in your bug report:

» The version of doxygen you are using (for instance 1.5.3, use doxygen --version if you are not sure).
» The name and version number of your operating system (for instance SuSE Linux 6.4)

* Itis usually a good idea to send along the configuration file as well, but please use doxygen with the —s flag
while generating it to keep it small (use doxygen -s -u [configName] to strip the comments from
an existing config file).

» The easiest (and often the only) way for me to fix bugs is if you can attach a small example demonstrating the
problem you have to the bug report, so | can reproduce it on my machine. Please make sure the example is
valid source code (could potentially compile) and that the problem is really captured by the example (I often
get examples that do not trigger the actual bug!). If you intend to send more than one file please zip or tar the
files together into a single file for easier processing. Note that when reporting a new bug you'll get a chance
to attach a file to it only after submitting the initial bug description.

You can (and are encouraged to) add a patch for a bug. If you do so please use PATCH as a keyword in the
bug entry form.

If you have ideas how to fix existing bugs and limitations please discuss them on the developers mailing
11ist (subscription required). Patches can also be sent directly to dimitri@stack.nl if you prefer not to send
them via the bug tracker or mailing list.

For patches please use "diff -uN" or include the files you modified. If you send more than one file please tar or
zip everything, so | only have to save and download one file.

Generated by Doxygen 1.8.10.1

http://bugzilla.gnome.org
http://bugzilla.gnome.org/enter_bug.cgi?product=doxygen
http://bugzilla.gnome.org/query.cgi?format=advanced&product=doxygen
http://bugzilla.gnome.org/enter_bug.cgi?product=doxygen
http://sourceforge.net/mail/?group_id=5971
http://sourceforge.net/mail/?group_id=5971
http://sourceforge.net/mail/?group_id=5971
mailto:dimitri@stack.nl

Part Il

Reference Manual

Chapter 19

Features

* Requires very little overhead from the writer of the documentation. Plain text will do, Markdown is support,
and for more fancy or structured output HTML tags and/or some of doxygen's special commands can be
used.

+ Cross platform: works on Windows and many Unix flavors (including Linux and MacOSX).
* Indexes, organizes and generates browsable and cross-referenced output even from undocumented code.
» Generates structured XML output for parsed sources, which can be used by external tools.

» Supports C/C++, Java, (Corba and Microsoft) Java, Python, VHDL, PHP IDL, C#, Fortran, TCL, Objective-C
2.0, and to some extent D sources.

» Supports documentation of files, namespaces, packages, classes, structs, unions, templates, variables, func-
tions, typedefs, enums and defines.

» JavaDoc (1.1), qdoc3 (partially), and ECMA-334 (C# spec.) compatible.

» Comes with a GUI frontend (Doxywizard) to ease editing the options and run doxygen. The GUI is available
on Windows, Linux, and MacOSX.

+ Automatically generates class and collaboration diagrams in HTML (as clickable image maps) and IATEX (as
Encapsulated PostScript images).

+ Uses the dot tool of the Graphviz tool kit to generate include dependency graphs, collaboration diagrams,
call graphs, directory structure graphs, and graphical class hierarchy graphs.

« Allows grouping of entities in modules and creating a hierarchy of modules.

+ Flexible comment placement: Allows you to put documentation in the header file (before the declaration of an
entity), source file (before the definition of an entity) or in a separate file.

» Generates a list of all members of a class (including any inherited members) along with their protection level.

+ Outputs documentation in on-line format (XHTML and UNIX man page) and off-line format (IATEX and RTF)
simultaneously (any of these can be disabled if desired). All formats are optimized for ease of reading.
Furthermore, compressed HTML can be generated from HTML output using Microsoft's HTML Help Work-
shop (Windows only) and PDF can be generated from the IATEX output.

 Support for various third party help formats including HTML Help, docsets, Qt-Help, and eclipse help.

* Includes a full C preprocessor to allow proper parsing of conditional code fragments and to allow expansion
of all or part of macros definitions.

» Automatically detects public, protected and private sections, as well as the Qt specific signal and slots sec-
tions. Extraction of private class members is optional.

+ Automatically generates references to documented classes, files, namespaces and members. Documentation
of global functions, global variables, typedefs, defines and enumerations is also supported.

90

Features

References to base/super classes and inherited/overridden members are generated automatically.

Includes a fast, rank based search engine to search for strings or words in the class and member documen-
tation (PHP based).

Includes an Javascript based live search feature to search for symbols as you type (for small to medium sized
projects).

You can type normal HTML tags in your documentation. Doxygen will convert them to their equivalent IATEX,
RTF, and man-page counterparts automatically.

Allows references to documentation generated for other (doxygen documented) projects (or another part of
the same project) in a location independent way.

Allows inclusion of source code examples that are automatically cross-referenced with the documentation.

Inclusion of undocumented classes is also supported, allowing to quickly learn the structure and interfaces of
a (large) piece of code without looking into the implementation details.

Allows automatic cross-referencing of (documented) entities with their definition in the source code.
All source code fragments are syntax highlighted for ease of reading.

Allows inclusion of function/member/class definitions in the documentation.

All options are read from an easy to edit and (optionally) annotated configuration file.

Documentation and search engine can be transferred to another location or machine without regenerating the
documentation.

Supports many different character encodings and uses UTF-8 internally and for the generated output.
Doxygen can generate a layout which you can use and edit to change the layout of each page.
There more than a 100 configurable options to fine-tune the output.

Can cope with large projects easily.

Although doxygen can now be used in any project written in a language that is supported by doxygen, initially

it was specifically designed to be used for projects that make use of Qt Software's Ot toolkit. | have tried to
make doxygen ‘Qt-compatible’. That is: Doxygen can read the documentation contained in the Qt source code and
create a class browser that looks quite similar to the one that is generated by Qt Software. Doxygen understands the
C++ extensions used by Qt such as signals and slots and many of the markup commands used in the Qt sources.

Doxygen can also automatically generate links to existing documentation that was generated with Doxygen or

with Qt's non-public class browser generator. For a Qt based project this means that whenever you refer to members
or classes belonging to the Qt toolkit, a link will be generated to the Qt documentation. This is done independent of
where this documentation is located!

Generated by Doxygen 1.8.10.1

http://qt-project.org/

Chapter 20

Doxygen usage

Doxygen is a command line based utility. Calling doxygen with the ——help option at the command line will give
you a brief description of the usage of the program.

All options consist of a leading character —, followed by one character and one or more arguments depending
on the option.

To generate a manual for your project you typically need to follow these steps:

1. You document your source code with special documentation blocks (see section Special comment blocks).

2. You generate a configuration file (see section Configuration) by calling doxygen with the —g option:

doxygen —-g <config_file>
3. You edit the configuration file so it matches your project. In the configuration file you can specify the input
files and a lot of optional information.

4. You let doxygen generate the documentation, based on the settings in the configuration file:
doxygen <config_file>

If you have a configuration file generated with an older version of doxygen, you can upgrade it to the current
version by running doxygen with the -u option.

doxygen -u <config_file>
All configuration settings in the original configuration file will be copied to the new configuration file. Any new options

will have their default value. Note that comments that you may have added in the original configuration file will be
lost.

20.1 Fine-tuning the output

If you want to fine-tune the way the output looks, doxygen allows you generate default style sheet, header, and
footer files that you can edit afterwards:

» For HTML output, you can generate the default header file (see HTML_HEADER), the default footer (see
HTML_FOQOTER), and the default style sheet (see HTML_STYLESHEET), using the following command:

doxygen -w html header.html footer.html stylesheet.css <config_file>

The config_file is optional. When omitted doxygen will search for a file named Doxyfile and process
that. When this is also not found it will used the default settings.

+ For IATEX output, you can generate the first and last part of refman.tex (see LATEX_HEADER and LA«
TEX_FOOTER) and the style sheet included by that header (normally doxygen. sty), using the following
command:

doxygen -w latex header.tex footer.tex doxygen.sty <config_file>

If you need non-default options (for instance to use extra IATEX packages) you need to make a config file with
those options set correctly and then specify that config file after the generated files (make a backup of the
configuration file first so you don't loose it in case you forget to specify one of the output files).

92 Doxygen usage

» For RTF output, you can generate the default style sheet file (see RTF_STYLESHEET_FILE) using:

doxygen -w rtf rtfstyle.cfg

Warning

When using a custom header you are responsible for the proper inclusion of any scripts and style sheets that
doxygen needs, which is dependent on the configuration options and may changes when upgrading to a new
doxygen release.

Note

« If you do not want documentation for each item inside the configuration file then you can use the optional
—s option. This can use be used in combination with the —u option, to add or strip the documentation
from an existing configuration file. Please use the —s option if you send me a configuration file as part
of a bug report!

» To make doxygen read/write to standard input/output instead of from/to a file, use — for the file name.

Generated by Doxygen 1.8.10.1

Chapter 21

Doxywizard usage

Doxywizard is a GUI front-end for configuring and running doxygen.
Note it is possible to start the doxywizard with as argument the configuration file to be used.
When you start doxywizard it will display the main window (the actual look depends on the OS used).

06 Doxygen GUI frontend

Step 1: Configure doxygen

Choose one of the following ways to configure doxygen

(wizard...) (Expert...) (Load..)

Step 2: Save the configuration file

.’-7-\.
| Save... | Status: not saved

Step 3: Specify the directory from which to run doxygen

Working directory: [Users/dimitri/doxygen (Select...)

Step 4: Run doxygen

Start Status: not running Save log...

Qutput produced by doxygen

Figure 21.1: Main window

The windows shows the steps to take to configure and run doxygen. The first step is to choose one of the ways
to configure doxygen.

Wizard Click this button to quickly configure the most important settings and leave the rest of the options to their
defaults.

Expert Click this button to gain access to the full range of configuration options.

94 Doxywizard usage

Load Click this button to load an existing configuration file from disk.

Note that you can select multiple buttons in a row, for instance to first configure doxygen using the Wizard and then
fine tune the settings via the Expert.

After doxygen is configured you need to save the configuration as a file to disk. This second step allows doxygen
to use the configuration and has the additional advantage that the configuration can be reused to run doxygen with
the same settings at a later point in time.

Since some configuration options may use relative paths, the next step is to select a directory from which to run
doxygen. This is typically the root of the source tree and will most of the time already be filled in correctly.

Once the configuration file is saved and the working directory is set, you can run doxygen based on the selected
settings. Do this by pressing the "Start" button. Once doxygen runs you can cancel it by clicking the same button
again. The output produced by doxygen is captured and shown in a log window. Once doxygen finishes, the log
can be saved as a text file.

The Wizard Dialog

If you select the Wizard button in step 1, then a dialog with a number of tabs will appear.

l-PrOject {Mude lDutput lDiagrams |

Provide some infarmation about the project you are documenting

Project name:

Project version or id:

Specify the directory to scan for source code

rFa

-\.
Source code directory: [Select...)

] Scan recursively

Specify the directory where doxygen should put the generated documentation

i N
Destination directory: | Select...)

./ -\'.
€ ok) (cancel)

Figure 21.2: Wizard dialog: Project settings

The fields in the project tab speak for themselves. Once doxygen has finished the Destination directory is where
to look for the results. Doxygen will put each output format in a separate sub-directory.

Generated by Doxygen 1.8.10.1

95

[iject I-Mnda—..l Output IDiagrams]

-Select the desired extraction mode:

) Documented entities only

() All entities

1 Include cross-referenced source code in the output

Select programming language to optimize the results for

® Optimize for C++ output
Optimize for Java output

Fa !
L
() Optimize for C output
L

E—ﬁ'lt—a C Cancel jJ

Figure 21.3: Wizard dialog: Mode of operating

The mode tab allows you to select how doxygen will look at your sources. The default is to only look for things
that have been documented.

You can also select how doxygen should present the results. The latter does not affect the way doxygen parses
your source code.

808

[project | Mode | Output | Diagrams |

-Qutput format(s) to generate

W HTML

%) plain HTML

() with frames and a navigation tree

() prepare for compressed HTML {.chm)

] With search function (requires PHP enabled web server)
W LaTeX

() as intermediate format for hyperlinked PDF

() as intermediate format for PDF

%) as intermediate format for PostScript
[Man pages
[Rich Text Format (RTF)

] XML

(—GI(—) C Cancel :J

Figure 21.4: Wizard dialog: Output to produce

Generated by Doxygen 1.8.10.1

96 Doxywizard usage

You can select one or more of the output formats that doxygen should produce. For HTML and IATEX there are
additional options.

008

| Project | Mode | Output [Diagrams |

Diagrams to generate

") No diagrams
() Use built-in class diagram generator

f¥) Use dot tool from the GraphViz package to generate
W Class diagrams

W Collaboration diagrams

E Include dependency graphs

@ Included by dependency graphs

W Overall Class hierarchy

1 Call graphs

f OK 3 (Cancel)

Figure 21.5: Wizard dialog: Diagrams to generate

Doxygen can produce a number of diagra