
Summary

This document describes the planning of all the test phases of the project
’Wazzup DOC?!’ that PUM group 12 is developing in the course TDDC02
at Linköping University.

It also describes the test specification of all the test phases such as test cases
and test order.

Responsibilities and time planning are brought up as well.

Test plan

Author: Eric Åberg

Version: 1.0

Date: 2005-11-11

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Project identity

Project group

PUM 12 2005
Linköpings tekniska högskola

Institutionen för datavetenskap (IDA)

Project members

Mailinglist for group

pum12@und.ida.liu.se

Web page

http://www-und.ida.liu.se/~pum12/

Customer

Per Karlström, ISY LiU

Customer contact person

Per Karlström, 013-28 29 03, perk@isy.liu.se

Project supervisor

David Broman, 013-28 57 24, davbr@ida.liu.se

Examiner

Robert Kaminski, 013-28 24 57, robka@ida.liu.se

Name Responsibility
Phone

number E-mail

Martin Jormedal Project leader (PL) 073-3121319 ook4mi@gmail.com

Daniel Hilding Customer relations (CRM) 070-7440440 danhi139@student.liu.se

Joakim Svartengren Documentation manager (DOC) 070-4040005 joasv190@student.liu.se

Jonas Norling Design manager (DES) 070-3904809 norling@lysator.liu.se

Johan Lissing Implementation manager (IM) 073-9036256 johli650@student.liu.se

Thobias Bergqvist Quality manager (QM) 073-6223040 thobe651@student.liu.se

Eric Åberg Test manager (TM) 070-4058130 eriab522@student.liu.se
3

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
4

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Document History

Date Version Changes Name

2005-11-05 0.1 Document created Eric Åberg

2005-11-08 0.2 Fixed spelling errors after commenting. Added
cross-references and references. Added the sum-
mary.

Eric Åberg

2005-11-11 1.0 Fixed spelling errors after inspection. Changed
the structure of the module specification
slightly. Added two tests in the module specifi-
cation.

Eric Åberg
5

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
6

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
1 Introduction.. 11

1.1 Purpose ... 11

1.2 Philosophy ... 11

1.3 Chapter overview... 11
1.3.1 Introduction ... 11
1.3.2 Global time plan .. 11
1.3.3 Unit test plan ... 11
1.3.4 Module test plan.. 11
1.3.5 Integration test plan .. 11
1.3.6 System test plan ... 12
1.3.7 Acceptance test plan... 12
1.3.8 Module test specification... 12
1.3.9 Integration test specification ... 12
1.3.10 System test specification .. 12
1.3.11 Acceptance test specification.. 12

1.4 Reading instructions .. 12

1.5 Document dependencies... 12

1.6 Distribution... 12

1.7 Glossary .. 13

2 Global time plan... 15

2.1 Time plan... 15

2.2 Test order .. 15

3 Unit test plan .. 17

3.1 Goals ... 17

3.2 Method... 17

4 Module test plan .. 19

4.1 Goals ... 19

4.2 Personnel and responsibiliteies... 19
4.2.1 Test manager.. 19
4.2.2 Test constructor .. 19
4.2.3 Test secretary ... 19
4.2.4 Tester.. 19

4.3 Time plan... 20

4.4 Methods... 20
4.4.1 Static code inspection ... 20
4.4.2 Black box testing... 20

4.5 Criteria before starting tests .. 20

4.6 Criteria for successful tests ... 20

4.7 Equipment and tools.. 21
4.7.1 Equipment... 21
7

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
4.7.2 Documents.. 21

4.8 Test procedure...21
4.8.1 Static code inspection ... 21
4.8.2 Black box testing... 22

5 Integration test plan...23

5.1 Goals ...23

5.2 Personnel and responsibilities ...23
5.2.1 Test manager.. 23
5.2.2 Test constructor .. 23
5.2.3 Test secretary ... 23
5.2.4 Tester.. 23

5.3 Time plan ...24

5.4 Methods ...24

5.5 Criteria before starting tests...24

5.6 Criteria for successful tests..24

5.7 Equipment and tools ..25
5.7.1 Equipment... 25
5.7.2 Documents.. 25

5.8 Test procedure...25
5.8.1 Preparations.. 25
5.8.2 Execution .. 25
5.8.3 Follow-up .. 25

6 System test plan ..27

6.1 Goals ...27

6.2 Personnel and responsibilities ...27
6.2.1 Test manager.. 27
6.2.2 Test constructor .. 27
6.2.3 Test secretary ... 27
6.2.4 Tester.. 27

6.3 Time plan ...28

6.4 Methods ...28

6.5 Criteria before starting tests...28

6.6 Criteria for successful tests..28

6.7 Equipment and tools ..28
6.7.1 Equipment... 28
6.7.2 Documents.. 28

6.8 Test procedure...29
6.8.1 Preparations.. 29
6.8.2 Execution .. 29
6.8.3 Follow-up .. 29
8

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
7 Acceptance test plan... 31

7.1 Goals ... 31

7.2 Personnel and responsibilities... 31
7.2.1 Test manager.. 31
7.2.2 Test constructor .. 31
7.2.3 Test secretary ... 31
7.2.4 Tester.. 31

7.3 Time plan... 32

7.4 Methods... 32

7.5 Criteria before starting tests .. 32

7.6 Criteria for successful tests ... 32

7.7 Equipment and tools.. 32
7.7.1 Equipment... 32
7.7.2 Documents.. 33

7.8 Test procedure .. 33
7.8.1 Preparations.. 33
7.8.2 Execution .. 33
7.8.3 Follow-up .. 33

8 Module test specification.. 35

8.1 Purpose ... 35

8.2 Description... 35

8.3 Modules ... 35
8.3.1 Tree printer ... 35
8.3.2 Verilog front-end ... 35

8.4 Test order .. 35

8.5 Test cases ... 36
8.5.1 Tree printer ... 36
8.5.2 Verilog front-end ... 39

9 Integration test specification.. 45

9.1 Purpose ... 45

9.2 Description... 45

9.3 Test modules ... 45

10 System test specification.. 47

10.1 Purpose ... 47

10.2 Description... 47

10.3 Test order .. 47

10.4 Account for satisfactory system test .. 47

10.5 Test cases. .. 48
9

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
11 Acceptance test specification ..51

11.1 Purpose ...51

11.2 Description...51

11.3 Test order ..51

11.4 Account for satisfactory system test ..51

11.5 Test cases ...51

12 References..53

12.1 Internal documents ..53

12.2 External documents ...53
10

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
1 Introduction

This chapter briefly describes what the document is about, how to compre-
hend it the best way and which documents are influenced by it.

1.1 Purpose

The purpose of this document is to allow the testing go as quick and easy as
possible and to ensure that the tests do not start until everyting is prepared.
It is foremost written to make sure that the final product gets the best pos-
sible quality.

1.2 Philosophy

Since a part of this project is to investigate if it is possible to extend Doxy-
gen to document Verilog code, there is a problem which modules and clas-
ses that need to be tested. Our basic requirements cover the parser and the
tree printer. These are the only classes with methods we know that at the
present time are known to be created. Therefore these are the only ones we
can test. If there are other modules that need testing, they will be covered in
section 4 "Module test plan" and section 5 "Integration test plan" .

Additional test cases need to be created in section 5 "Integration test plan"
and section 9 "Integration test specification" if this should happen.

1.3 Chapter overview

1.3.1 Introduction

This chapter briefly describes what the document is about, how to compre-
hend it the best way and which documents are influenced by it.

1.3.2 Global time plan

This chapter contains a global time plan of the testing in the project as well
as the order the testing.

1.3.3 Unit test plan

This chapter contains the goals of the unit testing and the method we are
using.

1.3.4 Module test plan

This chapter describes by which group members the module testing will be
performed, how much time the tests can use, and criteria which must be
fulfilled before a test can begin and before the group can call the test a suc-
cess.

1.3.5 Integration test plan

This chapter describes by which group members the integration testing will
be performed. How much time the tests can take and criteries which must
be fulfilled before a test can begin and before the group can call the test a
success.
Chapter 1: Introduction 11

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
1.3.6 System test plan

This chapter contains the goals of the system test, Which personel that are
involved and how the test is performed. It also contains a time plan for the
system test.

1.3.7 Acceptance test plan

This chapter contains the goals of the acceptance test, Which personel that
are involved and how the test is performed. It also contains a time plan for
the acceptance test.

1.3.8 Module test specification

This chapter contains the test cases used in the module test and in which
order they will be executed.

1.3.9 Integration test specification

This chapter contains the some information of at the present non-existing
integration test.

1.3.10 System test specification

This chapter contains the test cases used in the system test and in which
order the tests will be executed.

1.3.11 Acceptance test specification

This chapter contains a reference to the test cases for the acceptance test
and the order for them to be executed.

1.4 Reading instructions

To get an overall understanding of the planning of the testing the section 2
"Global time plan" should be read.

The planning of the tests of the different phases is described in section 3
"Unit test plan" to section 6 "System test plan"

The test cases for every phase is described in section 8 "Module test specifi-
cation" to section 11 "Acceptance test specification" .

Detailed test scripts will be written during the test phase and will be
published in the Test report [Åberg, 2005] as well as the test results.

1.5 Document dependencies

This document is dependent of the following docuements:

• Requirements specification [Hilding, 2005]
• Architecture specification [Norling, 2005]
• Design specification [Lissing, 2005:2]
• Project plan [Jormedal, 2005]

1.6 Distribution

This document will be distributed to:
12 Chapter 1: Introduction

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
• Document examinors: Peter Bunus and Stina Edelfeldt.
• Our supervior David Broman.
• The project folder.
• The home page the project.

1.7 Glossary

AST - Abstract Syntax Tree. A tree describing the structure of a source file.

Parser - A piece of software that determines the syntactic structure of a

language.

Stubs - Code that makes a module or several modules run wihout errors
from other missing modules.
Chapter 1: Introduction 13

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
14 Chapter 1: Introduction

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
2 Global time plan

This chapter contains a global time plan of the testing in the project as well
as the order of the testing.

2.1 Time plan

This is the time plan for the testing related work during the project. A more
detailed time plan is placed in every testing plan..

2.2 Test order

First of all the tree printer module has to be tested. When it is approved, the
testing can enter a module/integration test phase, where the tree printer
module is tested together with the Verilog front-end module.

The system test will take place when all the integration testing is complete.
The product is then ready for the customer to approve in the acceptance
test.

Week Phase Event Persons

35 Definition
phase

Test plan in the
quality report

TM

37 Definition
phase

Acceptance test
in the require-
ment specifica-
tion

TM

44 Design phase Test plan TM

46 Testing phase Test script crea-
tion

TM, DOC, CRM

46 Testing phase Module testing TM, DOC, CRM

48 Testing phase Integration tes-
ting

TM, PL

49 Testing phase System testing TM, PL

50 Testing phase Acceptance tes-
ting

TM, PL, CRM

49 Testing phase Test report TM, PL, CRM,
DOC

Table 13: Table over the global time plan.
Chapter 2: Global time plan 15

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
16 Chapter 2: Global time plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
3 Unit test plan

This chapter contains the goals of the unit testing and the method we are
using.

3.1 Goals

The goal with unit testing is to avoid those small errors (i.e. spelling errors
and mistakes made by the programmer) that always exist in newly written
code.

3.2 Method

The method we are using to handle this is the most common one: The pro-
grammer himself tests the function when a new one is written. We feel that
this is the best and most time conserving method at this state of the project.
Chapter 3: Unit test plan 17

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
18 Chapter 3: Unit test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
4 Module test plan

This chapter describes by which group members the module testing will be
performed, how much time the tests may use, and criteria which must be
fulfilled before a test can begin and before the group can call the test a suc-
cess.

4.1 Goals

The goal with module testing is to find as many bugs and errors as possible
in the inner functions of the modules.

4.2 Personnel and responsibiliteies

Each test needs a group of personnel with different responsibilities. One of
each of the following roles is needed.

4.2.1 Test manager

The test manager has got the main responsibility of the module testing.

The test manager makes sure that everyone in the test group knows their
roles during the module test.

The test manager has got the responsibility to make sure that every module
follows the test specification.

The test manager will evaluate the test reports and decide if further testing
is needed.

4.2.2 Test constructor

The test constructor creates the test script together with the test input and
makes sure it is runnable.

The test constructor creates a test protocol for the test secretary to fill in.

4.2.3 Test secretary

Every test has a test secretary who writes a test protocol. Every bug and
error is recorded in the protocol, so it is easy to findit later if needed. The
secretary role is given to the code writer of the module.

4.2.4 Tester

The tester executes the script together with the programmer.
Chapter 4: Module test plan 19

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
4.3 Time plan

Table 14: Time plan for module testing

4.4 Methods

There are two kinds of test steps, Code inspection and Program execution.
Since the project has not got nearly enough time to test everything, the test
group will perform two kind of tests. These methods are stated below.

4.4.1 Static code inspection

All written code must be controlled before the testing of module begins. It
is important that the code follows the the standard written in Programming
handbook [Lissing, 2005:1] e.g. File naming, indentation, commenting
according to doxygen standard etc.

4.4.2 Black box testing

When the static code inspection has been passed, the black box testing
begins. The main purpose of black box testing method is that the test cons-
tructor knows nothing about how the module is written. The only thing he
knows is how the output data should look like depending on the input
data.

4.5 Criteria before starting tests

To make sure that the test goes smoothly and the time is well spent, there
are some points that have to be checked before starting a test. Every point
below has to be fulfilled before the test can start.

• Test script and input are ready.
• Test protocol is ready.
• Test members, know where and when the test takes place.

4.6 Criteria for successful tests

A specific test case passes if the result is equivalent to the expected result. A
module test passes when an acceptable number of the test cases have been

Person Responsibility Task Available time

TM Responsible of
all testing

Administration 9 h

CRM Test constructor Constructs tests 3 h

DOC Test constructor Constructs tests 7 h

TM Tester Executes the
tests

3 h

DOC Tester Executes the
tests

3 h

CRM Tester Executes the
tests

2 h
20 Chapter 4: Module test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
passed. The entire module test phase passes when all modules have been
passed.

The testing can not test everything in the modules and even if it could, eve-
ryting can not be expected to be corrected. The test manager has to consider
the quantity of the errors together with the size of the errors. If the test
manager is not happy with the result, the test manager requests another
test when the errors have been corrected.

When the test manager feels that the testing is done the test manager evalu-
ates the results together with the quality manager and the project leader.

4.7 Equipment and tools

4.7.1 Equipment

• PC with linux/unix OS
• The current module

4.7.2 Documents

• Module test plan
• Module test specification
• Test scripts
• Test protocol
• Error reports
• Programming handbook[Lissing, 2005:1]

4.8 Test procedure

This section contains the performance of the module testing.

4.8.1 Static code inspection

This section contains the performance of the static code inspection. Before
the static code inspection can begin there are some preparations that have
to be performed. When the test is performed the follow-up begins. The fol-
low-up is performed so the errors can be corrected and it is easy to look
back on the errors in the future.

4.8.1.1 Preparations

When the code writer feels that a module is ready, he informs the test
manager about it. The test manager summons the test group and makes
sure that all the participants have read the Programming handbook
[Lissing, 2005:1] and the checklist by the test secretary.

4.8.1.2 Execution

The tester reads through the code and checks the checklist. If there is an
error it is recorded in the protocol.
Chapter 4: Module test plan 21

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
4.8.1.3 Follow-up

The results are placed on the project homepage and in the project folder.
The results are then discussed according to section 4.6 "Criteria for success-
ful tests" . When the static code inspection has passed, the test manager
starts the blackbox testing.

4.8.2 Black box testing

This section contains the performance of black box testing. Before black box
testing can begin there are some preparations thats have to be performed.
When the test is performed the follow-up begins. The follow-up is perfor-
med so the errors can be corrected and it is easy to look back on the errors
in the future.

4.8.2.1 Preparation

The test constructor writes the test script and all the belonging code, such
as stubs, according to the test specification, so that the test is runnable wit-
hout errors from other missing modules. The tester reads the module test
plan and module test specification. The static code inspection must have
been finished before the execution och the black box testing begins. All
Verilog files that are used as inputs must be synthesizable before they can
be run in the test.

4.8.2.2 Execution

The test construcor provides a computer with the module, test script and
the belonging code to the tester. The tester executes the test scripts and the
code writer of the module records the results.

4.8.2.3 Follow-up

The results are placed on the project homepage and in the project folder.
The results are then discussed according to section 4.6 "Criteria for success-
ful tests" .

If the module has been through a lot of retests the module’s design might
be questionable. It might be a better idea to change the design of the
module rather than keep testing it.

If the module passes at once without any errors at all or with very few
errors there might be someting wrong with the test script.

The Test manager will decide what measures that will be taken if any of
these cases should appear.
22 Chapter 4: Module test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
5 Integration test plan

This chapter describes by which group members the integration testing will
be performed. How much time the tests may take, and criteria which must
be fulfilled before a test can begin and before the group can call the test a
success. Since there are only two existing modules at the moment and they
are integrated in the module test, there will be no testing in this phase yet.

5.1 Goals

The goal with integration testing is to find as many bugs and errors as pos-
sible in the interface between modules.

5.2 Personnel and responsibilities

Each test needs a group of personnel with different responsibilities. One of
each of the following roles is needed.

5.2.1 Test manager

The test manager has got the main responsibility of the integration testing.

The test manager makes sure that everyone in the test group knows their
roles during the integration test.

The test manager has got the responsibility to make sure that the integra-
tion follows the test specification.

The test manager will evaluate the test reports and decide if further testing
is needed.

5.2.2 Test constructor

The test constructor creates the test script together with the test input and
makes sure it is runnable.

The test constructor creates a test protocol for the test secretary to fill in.

5.2.3 Test secretary

Every test has a test secretary who writes a test protocol. Every bug and
error is recorded in the protocol, so it is easy to findit later if needed. The
secretary role is given to one of the code writers of the modules.

5.2.4 Tester

The tester executes the script together with the programmer.
Chapter 5: Integration test plan 23

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
5.3 Time plan

Table 15: Time plan for integration testing

5.4 Methods

Since the module testing and integration testing is intermixed at the
moment, we have chosen to test according to the functional test in "RUT -
Development Handbook 12.1 Choice of Test Strategy v6.0" [Arvedahl,
2002]. This method is a lot like the module testing’s ’black box testing’
which we used in the the module testing.

There are some indications in the Design specification[Lissing, 2005:2] that
there will be changes in the Data organizer module as well as the some
other modules during the future investigation and implementation. If this
is the case there might be changes to the integration test plan when it is in
question.

5.5 Criteria before starting tests

To make sure that the test goes smoothly and the time is well spent there
are some points that have to be checked before starting a test. Every point
below has to be fulfilled before the test can start.

• Test script and input are ready.
• Test protocol is ready.
• Test members knows where and when the test takes place.

5.6 Criteria for successful tests

A specific test case passes if the result is equivalent to the expected result.
The entire integration test passes when all of the test cases have been pas-
sed.

The testing can not test everything in the modules and even if it could, eve-
ryting can not be expected to be corrected. The test manager have to consi-
der the quantity of the errors together with the size of the errors. If the test
manager is not happy with the result, the test manager requests another
test when the errors have been corrected.

When the test manager feels that the testing is done, the test manager eva-
luates the results together with the quality manager and the project leader.

Person Responsibility Task Available time

TM Responsible of
all testing

Administration 5 h

TM Test constructor Constructs tests 5 h

PR Tester Executes the
tests

3 h
24 Chapter 5: Integration test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
5.7 Equipment and tools

5.7.1 Equipment

• PC with linux/unix OS
• The current modules

5.7.2 Documents

• Integration test plan
• Integration test specification
• Test scripts
• Test protocol
• Error reports

5.8 Test procedure

This section contains the performance of the module testing.

5.8.1 Preparations

The test manager makes sure that the test specification for the system test is
available. The whole test group should have read this in an early stage of
the test period. The test constructor has written test scripts to match the
specification and is sure that all the tests are runnable. The test constructor
also makes sure that everything needed is provided to the tester i.e. compu-
ter, checklist, testscripts. Time and place is announced by the test manager.
All Verilog files that are used as inputs must be synthesizeable before they
can be run in the test.

5.8.2 Execution

The tester and the test secretary conduct all of the tests. The result is recor-
ded in the protocol by the test secretary.

5.8.3 Follow-up

The results are placed on the project homepage and in the project folder.
The results are then discussed according to section 5.6 "Criteria for success-
ful tests" .
Chapter 5: Integration test plan 25

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
26 Chapter 5: Integration test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
6 System test plan

This chapter contains the goals of the system test, which personnel that are
involved and how the test is performed. It also contains a time plan for the
system test.

6.1 Goals

The goal with the system test is to find differences between the existing
product and the Requirements specification [Hilding, 2005].

6.2 Personnel and responsibilities

6.2.1 Test manager

The test manager has got the main responsibility of the system testing.

The test manager makes sure that everyone in the test group knows their
roles during the system test.

The test manager has got the responsibility to make sure that every system
follows the test specification.

The test manager will evaluate the test reports and decide if further testing
is needed.

6.2.2 Test constructor

The test constructor creates the test script together with the inputs and
makes sure it is runnable.

The test constructor creates a test protocol for the test secretary to fill in.

6.2.3 Test secretary

Every test has a test secretary who writes a test protocol. Every bug and
error is recorded in the protocol, so it is easy to findit later if needed. The
secretary role is given to the code writers of the system.

6.2.4 Tester

The tester executes the script together with the programmer.
Chapter 6: System test plan 27

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
6.3 Time plan

6.4 Methods
• Test the system according to the Requirements specification [Hilding,

2005].
• Test the performance of the system.

6.5 Criteria before starting tests
• The integration test is completed.
• System test specification and system test scripts are ready.
• Test members knows where and when the test takes place.

6.6 Criteria for successful tests

A specific test case passes if the result is equivalent to the expected result.
The system passes when all of the test cases have been passed.

The testing can not test everything in the System and even if it could, eve-
rything can not be expected to be corrected. The test manager has to consi-
der the quantity of the errors together with the size of the errors. If the test
manager is not happy with the result, the test manager requests another
test after the errors have been corrected.

When the test manager feels that the testing is done, the test manager eva-
luates the results together with the quality manager and the project leader.

6.7 Equipment and tools

6.7.1 Equipment

• PC with linux/unix OS
• The system.

6.7.2 Documents

• System test plan
• System test specification
• Test scripts
• Test protocol
• Error reports

Person Responsibility Task Available time

Test manager Responsible of
all testing

Administration 7 h

Test manager Test constructor Constructs tests 5 h

Project leader Tester Executes the
tests

2 h
28 Chapter 6: System test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
6.8 Test procedure

6.8.1 Preparations

The test manager makes sure that the test specifiction for the system test is
available. The whole test group should have read this in an early state of
the test period. The test constructor has written test scripts to match the
specification and is sure that all the tests are runnable. The test constructor
also makes sure that everything needed is provided to the tester i.e. compu-
ter, checklist, testscripts. Time and place are announced by the test mana-
ger. All Verilog files that are used as inputs must be synthesizeable before
they can be run in the test.

6.8.2 Execution

The tester and the test secretary conduct all of the tests. The result is recor-
ded in the protocol by the secretary.

6.8.3 Follow-up

The test manager summons the entire test group when the system testing is
complete. The group will discuss:

• Were the test cases relevant?
• Were all the system functions tested?
• Were all the requirements tested?

Errors that are discovered during the system test might lead to a renegotia-
tion with the customer, since there is a great risk that the time it will take to
fix the errors is too long.
Chapter 6: System test plan 29

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
30 Chapter 6: System test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
7 Acceptance test plan

This chapter contains the goals of the acceptance test, Which personel that
are involved and how the test is performed. It also contains a time plan for
the acceptance test.

7.1 Goals

The goal with the acceptance test is to show the customer that the product
fulfils the requirements in the Requirements specification [Hilding, 2005] .

7.2 Personnel and responsibilities

7.2.1 Test manager

The test manager has got the main responsibility of the acceptance testing.

The test manager makes sure that everyone in the test group knows their
roles during the acceptance test.

7.2.2 Test constructor

The test constructor creates the test script together with the inputs and
makes sure it is runnable.

The test constructor creates a test protocol for the test secretary to fill in.

7.2.3 Test secretary

Every test has a test secretary who writes a test protocol. Every design error
is recorded in the protocol, so it is easy to find it later if needed. The secre-
tary role is given to one of code writers of the system.

7.2.4 Tester

The tester executes the script together with the programmer.
Chapter 7: Acceptance test plan 31

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
7.3 Time plan

7.4 Methods

The method used during the acceptance test will be benchmark testing, as
described in "RUT - development tutorial 14.1 Acceptance test v 2.0" [Karls-
son, 2005]. This is to make it easy to prepare code examples for the custo-
mer to use.

7.5 Criteria before starting tests
• The system test is completed.
• Acceptance test specification and acceptance test scripts are ready.
• Test members know where and when the test takes place.

7.6 Criteria for successful tests

A specific test case passes if the result is equivalent to the expected result.
The acceptance test passes when all of the test cases have been passed.

7.7 Equipment and tools

7.7.1 Equipment

• PC with linux/unix OS

Person Responsibility Task Available time

TM Responsible of
all testing and
expertise.

Administration
and answer
questions from
the customer.

5 h

CRM Expertise Answer ques-
tions from the
customer.

4 h

DES Expertise Answer ques-
tions from the
customer.

2 h

DOC Expertise Answer ques-
tions from the
customer.

2 h

QM Expertise Answer ques-
tions from the
customer.

2 h

CRM Expertise Answer ques-
tions from the
customer.

2 h

IM Expertise Answer ques-
tions from the
customer.

2 h
32 Chapter 7: Acceptance test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
• The system

7.7.2 Documents

• Acceptance test plan
• Acceptance test specification
• Test scripts
• Test protocol
• Error reports

7.8 Test procedure

7.8.1 Preparations

The test manager makes sure that the test specification for the acceptance
test is available. The whole test group should have read this in an early
stage of the test period. The test constructor has written test scripts to
match the specification and is sure that all the tests are runnable. The test
constructor also makes sure that everything needed is provided to the tes-
ter i.e. computer, checklist, test scripts. Time and place are announced by
the test manager to the test group and to the customer. All Verilog files that
are used as inputs must be synthesizeable before they can be run in the test.

7.8.2 Execution

The whole project group conduct all of the tests together with the customer.
The result is recorded in the protocol by the secretary. The whole project
group attend to make it easy to answer different kinds of questions from
the customer.

7.8.3 Follow-up

When the test is completed, the group analyses and discusses the result
together with the customer. If the customer is happy with the test, he signs
the contract in the requirement specification. If the customer is not satisf-
fied a solution has to be agreed upon.
Chapter 7: Acceptance test plan 33

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
34 Chapter 7: Acceptance test plan

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
8 Module test specification

This chapter contains the test cases used in the module test and in which
order they will be executed.

8.1 Purpose

The purpose of this test is to find as many errors and bugs as possible in the
modules. This is done to prevent errors from appearing later in the testing
with a dreadful outcome. The test cases are written to make it easier for the
test constructors to create the tests.

8.2 Description

Each test will be stated as below with a test id as MT-X where X increments
with the tests.

Test scripts and surrounding code will be created during the implementa-
tion phase.

8.3 Modules

These are the module that we know someting about at the present time in
the project. More modules will be added as the investigation progresses.

8.3.1 Tree printer

This is the module that writes the syntax tree into a readable form.

8.3.2 Verilog front-end

Verilog front-end parses through the code and generates data structures
which are very hard to interpret by a human without the tree printer. This
is why we have integrated the tree printer into this test.

8.4 Test order

We will start with MT-1 and then perform the tests in increasing order.

The first module that will be tested is the Tree printer. When this is comple-
ted the test of the Verilog front-end module begins.

Test id Identification of the module test.

Purpose Describes why the test is being done.

Reference The class(-es) and function(-s) that will be tested.

Data input The data that has to be inserted into the system to be
able to carry out the test.

Execution Describes how the test should be carried out.

Expected
result

If the test result is the same as the expected result, the
test has passed.
Chapter 8: Module test specification 35

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
8.5 Test cases

8.5.1 Tree printer

These are the test cases for the Tree printer. The output for of the Tree prin-
ter will be compared to the definitions in the Architecture specification
[Norling, 2005].

Test id MT-1

Purpose To make sure that it writes out every Verilog module
that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST containing 3 modules.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing the 3 modules.

Test id MT-2

Purpose To make sure that it writes out every Verilog module
argument that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST containing 3 modules with different argu-
ments.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing the 3 modules
with corresponding argument.

Test id MT-3

Purpose To make sure that it writes out a Doxygen comment
that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST containing a comment block with some text.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing the comment,
with the comment associated with the correct node.

Test id MT-4

Purpose To make sure that it writes out every wire that the AST
contains.

Reference TreePrinter::print(:Entry*).
36 Chapter 8: Module test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Data input An AST containing a module with 3 modules with 3
wires in each module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing a module with 3
modules with 3 wires in each module.

Test id MT-5

Purpose To make sure that it writes out modules instantiated in
other modules that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST containing 3 instantiated modules with 3 wires
in each module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing 3 instantiated
modules with 3 wires in each module.

Test id MT-6

Purpose To make sure that it writes out the custom directive
’author’ that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST that contains a custom directive ’author’ in
one module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing an ’author’ in
the module.

Test id MT-7

Purpose To make sure that it writes out the custom directive
’date’ that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST that contains a custom directive ’date’ in one
module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing an ’date’ in the
module.

Test id MT-8

Purpose To make sure that it writes out the custom directive
’bug’ that the AST contains.
Chapter 8: Module test specification 37

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Reference TreePrinter::print(:Entry*).

Data input An AST that contains a custom directive ’bug’ in one
module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing a ’bug’ in the
module.

Test id MT-9

Purpose To make sure that it writes out the custom directive
’clock’ that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST that contains a custom directive ’clock’ in one
module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing a ’clock’ in the
module.

Test id MT-10

Purpose To make sure that it writes out the custom directive
’reset’ that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST that contains a custom directive ’reset’ in one
module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing a ’reset’ in the
module.

Test id MT-11

Purpose To make sure that it writes out the custom directive
’comb’ that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST that contains a custom directive ’comb’ in one
module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing a ’comb’ in the
module.
38 Chapter 8: Module test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
8.5.2 Verilog front-end

The Verilog front-end parses the file and generates an AST which is the
input to Tree printer. The Tree printer then writes the AST as a text readable
by a human. We will use a test bench, created by the group, which calls the

Test id MT-12

Purpose To make sure that it writes out the custom directive
’state’ that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST that contains a custom directive ’state’ in one
module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing a ’state’ in the
module.

Test id MT-13

Purpose To make sure that it writes out the custom directive
’class’ that the AST contains.

Reference TreePrinter::print(:Entry*).

Data input An AST that contains a custom directive ’class’ in one
module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing a ’class’ in the
module.

Test id MT-14

Purpose To make sure that it writes out all the custom directives
together with the modules and wires that the AST con-
tains.

Reference TreePrinter::print(:Entry*).

Data input An AST that contains all the custom directives inside
instantiated modules with wires in one module.

Execution Execute the function print with the AST as input.

Expected
result

A readable form of the AST containing all the custom
directives, modules and wires listed above.
Chapter 8: Module test specification 39

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
parseInput() in VerilogLnguageScanner with all the right arguments. The
test bench needs a Verilog file as input.

Test id MT-15

Purpose To make sure that parser parses every module that the
Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input An verilog file containing 3 modules.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing the 3
modules.

Test id MT-16

Purpose To make sure that the parser parses every module
argument that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input An Verilog file containing 3 modules with different
arguments.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing the 3
modules with corresponding argument.

Test id MT-17

Purpose To make sure that the parser parses every module
argument that the Verilog files contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input Three Verilog files containing 3 modules in different
files with different arguments.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing the 3
modules with corresponding argument.

Test id MT-18

Purpose To make sure that the parser parses an ordinary com-
ment that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input An Verilog file containing a comment block with some
text.
40 Chapter 8: Module test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing the com-
ment.

Test id MT-19

Purpose To make sure that the parser parses every wire that the
Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file containing 3 modules with 3 wires in
each module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing 3 modu-
les with 3 wires in each module.

Test id MT-20

Purpose To make sure that the parser parses modules instantia-
ted in other modules that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file containing 3 instantiated modules with 3
wires in each module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing 3 instan-
tiated modules with 3 wires in each module.

Test id MT-21

Purpose To make sure that the parser parses the custom direc-
tive ’author’ that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains a custom directive ’author’
in one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing an ’aut-
hor’ in the module.

Test id MT-22

Purpose To make sure that the parser parses the custom direc-
tive ’date’ that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)
Chapter 8: Module test specification 41

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Data input A Verilog file that contains a custom directive ’date’ in
one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing an ’date’
in the module.

Test id MT-23

Purpose To make sure that the parser parses the custom direc-
tive ’bug’ that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains a custom directive ’bug’ in
one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing a ’bug’ in
the module.

Test id MT-24

Purpose To make sure that the parser parses the custom direc-
tive ’clock’ that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains a custom directive ’clock’ in
one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing a ’clock’
in the module.

Test id MT-25

Purpose To make sure that parser parses the custom directive
’reset’ that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains a custom directive ’reset’ in
one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing a ’reset’
in the module.

Test id MT-26

Purpose To make sure that the parser parses the custom direc-
tive ’comb’ that the Verilog file contains.
42 Chapter 8: Module test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains a custom directive ’comb’ in
one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing a ’comb’
in the module.

Test id MT-27

Purpose To make sure that the parser parses the custom direc-
tive ’state’ that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains a custom directive ’state’ in
one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing a ’state’
in the module.

Test id MT-28

Purpose To make sure that the parser parses the custom direc-
tive ’class’ that the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains a custom directive ’class’ in
one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing a ’class’
in the module.

Test id MT-29

Purpose To make sure that the parser parses all the custom
directives together with the modules and wires that the
Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains all the custom directives
inside instantiated modules with wires in one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing all the
custom directives, modules and wires listed above.
Chapter 8: Module test specification 43

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Test id MT-30

Purpose To make sure that the parser parses all the custom
directives together with the modules in different files
and wires that the Verilog files contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input Three Verilog files that containing all the custom direc-
tives inside instantiated modules in different files with
wires in one module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file containing all the
custom directives, modules and wires listed above.

Test id MT-31

Purpose To make sure that the parser ignores the custom direc-
tive ’clock’ and ’reset’ when they are declared with
non-existing wires in the Verilog file contains.

Reference VerilogLanguageScanner::parseInput(:Entry*)

Data input A Verilog file that contains a custom directive ’clock’
and ’reset’ pointing to wires that do not exist in one
module.

Execution Execute the test bench with the Verilog file as input.

Expected
result

A readable form of the Verilog file not containing a
’clock’ or ’reset’ in the module. A warning is generated.
44 Chapter 8: Module test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
9 Integration test specification

This chapter contains information of the presently non-existing integration
test.

9.1 Purpose

The integration test is performed to make sure that every module interface
works together with each other. This is to make it easier to locate an error
therefore make it easier to correct. The test cases are written to make it
easier for the test constructors to create the tests.

9.2 Description

Each test will be stated as below with a test id as IT-X where X increments
with the tests..

Test scripts and surrounding code will be created during the implementa-
tion phase.

9.3 Test modules

As it is now, there are no modules being tested in the integration test. One
integration(Tree printer, Verilog front-end) took place during the module
test. There will probably appear a number of tests as the project progresses.
This will be handled at that time and test cases will be written.

Test id Identification of the module test.

Purpose Describes why the test is being done.

Reference The class(-es) that will be tested.

Data input The data that has to be inserted into the system to be
able to carry out the test.

Execution Describes how the test should be carried out.

Expected
result

If the test result is the same as the expected result, the
test has passed.
Chapter 9: Integration test specification 45

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
46 Chapter 9: Integration test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
10 System test specification

This chapter contains the test cases used in the system test and in which
order the tests will be executed.

10.1 Purpose

This test is taken place to ensure that the product behaves as the group
expects it to behave. It is also meant to check the user performance of the
product. The test cases are written to make it easier for the test constructors
to create the tests.

10.2 Description

Each test will be stated as below with a test id as ST-X where X increments
with the tests.

Test scripts and surrounding code will be created during the implementa-
tion phase.

10.3 Test order

This test phase will start with the test ST-1 and then continue with increa-
sing order.

10.4 Account for satisfactory system test

During all tests the time each execution takes will be taken into considera-
tion. This is done to ensure that the performance of the system is satisfac-
tory.

Since we do not know what classes that needs to be updated or created to
reach the Normal and Extra requirements yet, they are not listed in the sys-
tem testing. These tests will be added as the project progresses.

Test id Identification of the acceptance test.

Purpose Describes why the test is being done.

Req. The corresponding requirement

Req. level The level of the corresponding requirement.

Data input The data that has to be inserted into the system to be
able to carry out the test.

Execution Describes how the test should be carried out.

Expected
result

If the test result is the same as the expected result, the
test has passed.
Chapter 10: System test specification 47

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
10.5 Test cases.

Test id ST-1

Purpose To verify that the program is written in C++ and Flex.

Req. N-1

Req. level Basic

Data input -

Execution Go through the code and examine if it is written in C++
and Flex.

Expected
result

The code is written in C++ and Flex.

Test id ST-2

Purpose To verify that the program is documented in Doxygen.

Req. N-2

Req. level Basic

Data input -

Execution Go through the comments and examine if it is com-
mented with Doxygen comments.

Expected
result

The code is commented with Doxygen.

Test id ST-3

Purpose To verify that the program is easy to upgrade in the
future.

Req. N-3

Req. level Basic

Data input -

Execution Control the written code towards the Programming
handbook [Lissing, 2005:1].

Expected
result

The customer thinks that the program is easy to
upgrade

Test id ST-4

Purpose To verify that the program’s code and user interface as
well as the documentation are all written in English.

Req. N-5

Req. level Basic
48 Chapter 10: System test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Data input -

Execution Go through the code and documents and see if they are
in English.

Expected
result

The code and documentation are written in English.

Test id ST-5

Purpose To verify that the program’s code is handled with Sub-
version.

Req. N-6

Req. level Basic

Data input -

Execution Check the Subversion history for existing versions.

Expected
result

The Subversion history contains several versions of
code.

Test id ST-6

Purpose To verify that the program has the ability to parse Veri-
log code.

Req. F-1

Req. level Basic

Data input Verilog file.

Execution Execute the program.

Expected
result

The program executes without errors.

Test id ST-7

Purpose To verify that the program can produce a syntax tree
from a Verilog code file.

Req. F-2

Req. level Basic

Data input Verilog file.

Execution Execute the program.

Expected
result

The program produces a syntax tree that contain nodes
for all constructs in the Verilog source file that are
important to the generation of documentation.
Chapter 10: System test specification 49

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
Test id ST-8

Purpose To verify that the program prints the syntax tree in a
readable form.

Req. F-3

Req. level Basic

Data input Verilog file.

Execution Execute the program.

Expected
result

The program prints a readable syntax tree that contain
nodes for all constructs in the Verilog source file that
are important to the generation of documentation.
50 Chapter 10: System test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
11 Acceptance test specification

This chapter contains a reference to the test cases for the acceptance test
and the order for them to be executed.

11.1 Purpose

This test is conducted to ensure the customer and the project group that the
product has met all the expected requirements which the customer and the
group have agreed upon. The test cases are written to make it easier for the
test constructors to create the tests.

11.2 Description

Each test will be stated as below with a test id as X where X increments
with the tests.

Test scripts and surrounding code will be created during the implementa-
tion phase.

11.3 Test order

The testing will start with test ’1’ and then continue in increasing order.

11.4 Account for satisfactory system test

All the active requirements are tested in the acceptance testing.

11.5 Test cases

All the acceptance test cases are listed in Requirements specification [Hil-
ding, 2005].

Test id Identification of the acceptance test.

Purpose Describes why the test is being done.

Req. The corresponding requirement

Req. level The level of the corresponding requirement.

Data input The data that has to be inserted into the system to be
able to carry out the test.

Execution Describes how the test should be carried out.

Expected
result

If the test result is the same as the expected result, the
test has passed.
Chapter 11: Acceptance test specification 51

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
52 Chapter 11: Acceptance test specification

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
12 References

12.1 Internal documents
• [Hilding, 2005] Hilding, Daniel, "Requirements specification" (2005)
• [Jormedal, 2005] Jormedal, Martin, "Project plan" (2005)
• [Norling, 2005] Norling, Jonas, "Architecture specification" (2005)
• [Lissing, 2005:1] Lissing, Johan, "Programming handbook" (2005)
• [Lissing, 2005:2] Lissing, Johan, "Design specification" (2005)
• [Åberg, 2005] Åberg, Eric, "Test report" (2005)

12.2 External documents

[Arvedahl, 2002] Arvedahl, Svante, "RUT - Development Handbook 12.1
Choice of Test Strategy v6.0" (2002)

[Karlsson, 2005] Karlsson, David, "RUT - development tutorial 14.1 Accep-
tance test v 2.0" (2005)
Chapter 12: References 53

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Test plan
Eric Åberg

2005-11-11 / v 1.0
54 Chapter 12: References

