
Summary

This is the technical documentation for "Wazzup DOC?!", a Verilog docu-
mentation tool developed by PUM group 12 at Linköping University. The
document describes how the product should be installed, maintained and
extended.

Technical documentation

Author: Johan Lissing

Version: 1.1

Date: 2005-12-12

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
Project identity

Project group

PUM 12 2005
Linköpings tekniska högskola

Institutionen för datavetenskap (IDA)

Project members

Mailinglist for group

pum12@und.ida.liu.se

Web page

http://www-und.ida.liu.se/~pum12/

Customer

Per Karlström, ISY LiU

Customer contact person

Per Karlström, 013-28 29 03, perk@isy.liu.se

Project supervisor

David Broman, 013-28 57 24, davbr@ida.liu.se

Examiner

Robert Kaminski, 013-28 24 57, robka@ida.liu.se

Name Area of responsibility Telephone E-mail

Martin Jormedal Project leader (PL) 073-3121319 ook4mi@gmail.com

Daniel Hilding Customer relations (CR) 070-7440440 danhi139@student.liu.se

Joakim Svartengren Documentation manager (DOC) 070-4040005 joasv190@student.liu.se

Jonas Norling Design manager (DES) 070-3904809 norling@lysator.liu.se

Johan Lissing Implementation manager (IM) 073-9036256 johli650@student.liu.se

Thobias Bergqvist Quality manager (QM) 073-6223040 thobe651@student.liu.se

Eric Åberg Test manager (TM) 070-4058130 eriab522@student.liu.se
3

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
4

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
Document History

Date Version Changes Name

2005-12-01 0.1 Document created. Johan Lissing

2005-12-04 0.2 Document updated after comments. A few spel-
ling and grammatical errors were corrected.

Johan Lissing

2005-12-05 1.0 Document updated after inspection. Corrected
some spelling errors and rewrote a few obscure
sentences. Added section 3.2.2.

Johan Lissing

2005-12-12 1.1 Adapted section 6.2 to match the contents of the
installation CD.

Johan Lissing
5

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
6

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
1 Introduction.. 9

1.1 Purpose of this document.. 9

1.2 Background ... 9

1.3 Document overview ... 9
1.3.1 Introduction ... 9
1.3.2 System overview... 9
1.3.3 ToDo list.. 9
1.3.4 Makeshift solutions ... 9
1.3.5 Extensions and improvements.. 9
1.3.6 Installation and development .. 9
1.3.7 Testing .. 10
1.3.8 References.. 10

1.4 Reading instructions .. 10

1.5 Document dependencies... 10

1.6 Distribution... 10

1.7 Glossary .. 10

2 System overview.. 11

2.1 System functionality... 11

2.2 Preprocessor ... 11

2.3 Verilog front-end .. 11
2.3.1 Scanner rules.. 11
2.3.2 The Entry class ... 12

2.4 Tree printer .. 12

2.5 Data organizer ... 12

2.6 Output generator ... 12

3 ToDo list ... 13

3.1 Requirements not met ... 13
3.1.1 F-8 Custom directives (extra level) ... 13
3.1.2 F-10 Windows compatible (extra level)... 13
3.1.3 F-13 Verilog-2001 compatible parser (extra level).......................... 13

3.2 Known errors and limitations ... 14
3.2.1 Synthesizable Verilog code required .. 14
3.2.2 Special cases with correct syntax ... 14
3.2.3 Scope separator.. 14

4 Makeshift solutions ... 17

4.1 Use of Doxygen data types ... 17

4.2 Skipping troublesome Verilog code ... 17

5 Extensions and improvements... 19

5.1 Extensions to the implementation.. 19
7

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
5.1.1 Translation to other languages ... 19
5.1.2 Graphical representation of instantiations....................................... 19
5.1.3 Highlighted code in the documentation... 19
5.1.4 Verilog-2005 compliance .. 19

5.2 Improvements to current implementation19
5.2.1 More thorough documentation .. 19
5.2.2 More custom directives ... 20

5.3 Extending and improving Doxygen ..20

6 Installation and development ...21

6.1 Installation prerequisites ..21
6.1.1 Required software... 21
6.1.2 Optional software .. 21

6.2 Installation procedure ..21

6.3 User’s guide...22
6.3.1 Prerequisites ... 22
6.3.2 Generating documentation for a Verilog project 22

6.4 Code structure ...23

6.5 Development prerequisites ..24
6.5.1 Checking out a revision from the Subversion server 24
6.5.2 Build system.. 24
6.5.3 Checking in changes... 24

7 Testing ..25

7.1 General testing information..25

7.2 Test documents ...25

7.3 Test scripts ..25
7.3.1 Treeprinter .. 25
7.3.2 Verilog scanner ... 25
7.3.3 Preprocessor... 25

8 References..27

8.1 Internal documents ..27

8.2 External documents ...27

A Source files...29

A.1 Preprocessor ...29

A.2 Verilog front-end ..29

A.3 Tree printer ..30

A.4 Data organizer ...31

A.5 Output generator..32
8

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
1 Introduction

This chapter contains information about the disposition and contents of the
technical documentation. It is intended to work as a guide for the reader, as
well as anyone introducing modifications to this document.

1.1 Purpose of this document

The purpose of the technincal documentation is to ease future development
of the product "Wazzup DOC?!", a documentation tool for Verilog, develo-
ped by PUM group 12. It should be an entry point in the search for informa-
tion on how to modify or extend the product. The document contains a
system overview, the shortcomings of the product, as well as suggestions
for future extensions and improvements. The testing is also described here,
so that it can be replicated and the test scripts can be reused.

The document is also the result of all research on Doxygen conducted
during the implementation phase. It can therefore be useful to anyone who
intends to add support for other languages to Doxygen.

Finally, the technical documentation contains directions on where to find
and how to install the product.

The intented readers of this document are future developers and mainte-
nance personnel.

1.2 Background

For a detailed project description and background, see the requirements
specification [Hilding, 2005].

1.3 Document overview

This section describes the contents of each chapter in this document.

1.3.1 Introduction

Describes the disposition and contents of the technical documentation.

1.3.2 System overview

Gives an overview of the complete system.

1.3.3 ToDo list

Lists features that remain to be implemented.

1.3.4 Makeshift solutions

Describes any makeshift solutions or work-arounds in the software.

1.3.5 Extensions and improvements

Suggestions for further development.

1.3.6 Installation and development

How to install the product and develop it.
Chapter 1: Introduction 9

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
1.3.7 Testing

How the testing was done.

1.3.8 References

Lists all referenced resources. Text within square brackets refer to this sec-
tion.

1.4 Reading instructions

As this is a highly technical document, all of it should be read for a full
understanding. A future project group, striving to extend or modify the
product, should also, at least briefly, read the architecture specification
[Norling, 2005] and the design specification [Lissing, 2005].

1.5 Document dependencies

Changes in these documents might require changes in the technical docu-
mentation:

• Requirements specification [Hilding, 2005]
• Architecture specification [Norling, 2005]
• Design specification [Lissing, 2005]

1.6 Distribution

This document will be distributed to:

• Thomas Gustavsson and Angela Johansson, examiners of the technical
documentation

• David Broman, project supervisor
• Per Karlström, customer
• The project locker
• The project home page

1.7 Glossary

AST - Abstract Syntax Tree. A tree describing the structure of a source file.

Flex - The GNU lexical analyzer (a variant of lex).

Lexical analyzer - see scanner.

Parser - A piece of software that determines the syntactic structure of a
language.

Scanner - A piece of software that breaks down the input into word-like
tokens.

Verilog - A hardware description language.
10 Chapter 1: Introduction

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
2 System overview

This chapter gives an overview of the system by first describing the func-
tionality of the system and then briefly how each module works. There is
one subsection for each module. The modules are defined in the architec-
ture specification [Norling, 2005] and described in detail in the design spe-
cification [Lissing, 2005]. The correspondences between the modules and
their source files are shown in the appendix on page 29 and on.

2.1 System functionality

Doxygen is a tool for generating documentation from source files in various
programming languages, such as C++ and Java. Constructs in the source
files, like classes, functions and variables, are presented as hierarchical
tables in the documentation. If the constructs are commented using Doxy-
gen’s special comment format, these comments also appear in the docu-
mentation.

The product "Wazzup DOC?!" is an extension to Doxygen. It allows Doxy-
gen to generate documentation for Verilog source code and the constructs
therein, such as modules, registers, wires and so on.

To generate documentation from source files, a user will simply have to
execute the program in the directory with the source files. Subfolders will
be created with the documentation in different formats, such as HTML and
LaTeX. The user can control the documentation process with a configura-
tion file, where various options can be selected, e.g. output format, docu-
mentation detail, etc. How to optimize the configuration file when
documenting Verilog source files is described in section 6.3.2 "Generating
documentation for a Verilog project" .

2.2 Preprocessor

The preprocessor for Verilog is implemented as small changes to the C++
preprocessor in Doxygen. It reads Verilog source files and evaluates compi-
ler directives, such as macros and ifndef-endif statements.

2.3 Verilog front-end

The Verilog front-end module consists of the VerilogLanguageScanner
class. Its code is generated by Flex from the file verilogscanner.l. This
module scans one or several (preprocessed) Verilog source files and genera-
tes an AST, which is returned to the data organizer module. The AST nodes
are instances of the Doxygen Entry class. Whenever an interesting cons-
truct is found a the Verilog file, a new node is created to hold information
about it and its documentation.

2.3.1 Scanner rules

The scanner rules are described in [Lissing, 2005] on a Verilog keyword
abstraction level. The associated C++ code fragments are used to create the
AST nodes.
Chapter 2: System overview 11

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
2.3.2 The Entry class

Instances of the Doxygen Entry class are used as tree nodes in the AST. An
Entry instance can for example represent a Verilog module or wire. A
documentation block regarding such a construct will be placed in the same
Entry as the construct itself.

2.4 Tree printer

The tree printer was created only to test the Verilog front-end and is thus
not necessary to use the program to generate documentation. It can, howe-
ver, be useful when improving the scanner or when writing completely
new scanners to add support for other languages to Doxygen.

The print() function in class TreePrinter takes a pointer to the root
node of the AST as an argument, and prints its contents to a specified out-
putstream. The output of each tree node is indented according to the tree
level of the node.

2.5 Data organizer

The data organizer module is the central part of Doxygen. It calls the Veri-
log front-end and receives the complete AST for the Verilog code. The AST
data is then organized into lists and tables and passed to the output genera-
tor module. Various changes have been made to this module to introduce
the Verilog concepts. The ClassDef and MemberDef classes have been
modified to support Verilog constructs, such as module and wire.

2.6 Output generator

The output generator module generates the documentation from the lists
gathered by the data organizer. Besides HTML and LaTeX, a few other out-
put formats are also supported. This module is basically the same as the
Doxygen equivalent. Only a few changes have been made to the English
and Swedish translator classes, to make the output more tailored for Veri-
log documentation.
12 Chapter 2: System overview

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
3 ToDo list

This chapter describes what remains to be done for the product to meet all
the requirements in the requirements specification [Hilding, 2005].

3.1 Requirements not met

This section shows which requirements that remain to be met and gives
hints on how they could be implemented.

3.1.1 F-8 Custom directives (extra level)

The custom directives specified in the architecture specification [Norling,
2005] are not fully functional. The ones already supported by Doxygen are
working, but the Verilog-specific ones - \clock, \reset, \comb, \state
and \class - are not. The functionality of the \class directive can be
acheived using other standard Doxygen directives, such as \ingroup. The
other unimplemented directives require connections to clocked or combi-
natorial nets (such as statements starting with the always keyword),
which are currently just skipped by the Verilog front-end.

To implement these Verilog-specific custom directives, the comment scan-
ner in commentscan.l will have to be extended. The scanner is called
from the Verilog scanner (verilogscanner.l) whenever a documenta-
tion block is encountered. A documentation block may contain any number
of these directives, or tags, which are caught by rules in the comment scan-
ner.

The implementation also requires major changes in Doxygen’s data organi-
zer and output generator. They need to be able to handle and store informa-
tion about the clocked and combinatorial nets and documentation blocks
for them. These items will have to be added to the Entry tree node class and
documentation sections for them will have to be added to the output gene-
rator classes.

An implementation of requirement F-8 would be very time consuming and
due to lack of implementation time it was not done in this project.

3.1.2 F-10 Windows compatible (extra level)

Doxygen claims to be Windows compatible, according to [van Heesch], alt-
hough the installation is rather bulky. It requires many tools that are nor-
mally not included in Windows.

The changes and additions to Doxygen in the project should not affect Dox-
ygen’s Windows compatibility. However, a test of this would be very time
consuming and require resources from the more important tests of basic
and normal requirements. Therefore, requirement F-10 has not been tested
and can not be considered met.

3.1.3 F-13 Verilog-2001 compatible parser (extra level)

The concepts in the latest Verilog specification, IEEE standard 1364-2001 or
Verilog-2001, are not covered by the implementation of the Verilog front-
end.

The reason for this is that the Verilog-2001 specification was discovered by
the project group too late in the implementation phase. The customer did
Chapter 3: ToDo list 13

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
not explicitly express a wish for Verilog-2001 compliance during the defini-
tion phase and it was therefore not included in the requirements specifica-
tion [Hilding, 2005] until later. It has also been hard to find a complete
specification of all new concepts in Verilog-2001.

To make the Verilog front-end compatible with Verilog 2001, new scanner
rules will have to be added to verilogscanner.l. New compiler directi-
ves will also have to be implemented in the preprocessor, pre.l.

Until requirement F-13 is met, two special directives can be placed around
Verilog-2001 code to make the Verilog front-end ignore it. This way the
code can still be documented, although the documentation may be incom-
plete. See section 4.2 "Skipping troublesome Verilog code" for a usage
example.

3.2 Known errors and limitations

3.2.1 Synthesizable Verilog code required

The Verilog front-end module assumes that the Verilog code it scans is cor-
rect in the sense that it follows the IEEE1364 standard and may be synthesi-
zed. No specific tests are done to make sure that the code is correct and
erroneous code may thus produce unexpected results.

3.2.2 Special cases with correct syntax

A few cases exist where a Verilog file with correct syntax is not interpreted
correctly by the Verilog front-end. The scanner rules in the Verilog front-
end should be adjusted to cope with these circumstances. The discovered
cases are the following:

3.2.2.1 Multiple module instantiation

A comma-separated list of module instantiations.

Example syntax:

my_module a, b, c;

3.2.2.2 No whitespace between net keyword and width

A declaration of a net (e.g. a register) where there is no whitespace between
the keyword (e.g. reg) and the starting bracket of the bus/register width.

Example syntax:

reg[7:0] d;

3.2.3 Scope separator

The scope separator for generated Verilog documentation is currently the
same as for C++, namely the double colon "::", which means that all internal
signals will appear in the documentation as:

module_name::signal_name

The scope separator should be changed to something more Verilog-like, for
instance a dot ".". The change can be made in the MemberDef class by
checking the value of the OPTIMIZE_OUTPUT_FOR_VERILOG user
14 Chapter 3: ToDo list

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
option, similar to how the "[private]" annotation was removed, as descri-
bed in section 4.1.

A solution to prevent the module name and the scope separator to be prin-
ted before the signal name without modifying the source code is to change
the HIDE_SCOPE_NAMES setting in Doxyfile. See section 6.3.2.
Chapter 3: ToDo list 15

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
16 Chapter 3: ToDo list

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
4 Makeshift solutions

4.1 Use of Doxygen data types

The use of predefined data types in Doxygen has required some makeshift
solutions. In the nodes of the AST, all Verilog ports (input, output, inout)
are stored as public compound members in Entry instances, while signals
and variables inside a Verilog module are stored as private compound
members.

The documentation originally generated by Doxygen from this setup had
some issues that needed to be resolved. For instance, after each private
member the word "private" was printed in brackets, which made no sense
in a Verilog documentation. This particular flaw was corrected in the Mem-
berDef class by checking the value of the
OPTIMIZE_OUPUT_FOR_VERILOG user option, as described in the design
specification [Lissing, 2005]. All detected flaws in the documentation gene-
ration have been corrected this way to contain more Verilog-like text. It is a
bulky solution, but Doxygen uses it similarly in a number of places, to tai-
lor the documentation to suit different languages.

To avoid the need of pin-pointing each documentation flaw, when exten-
ding the product in the future, the data types in Doxygen could be made
more general and even more language environment testing could be used
to tailor the output. Another option would be to have specific data types
for each supported programming language.

4.2 Skipping troublesome Verilog code

The Verilog front-end has been tested to work correctly with Verilog code.
However, as section 3.1 says, the scanner is not yet compatible with Veri-
log-2001 and some of the custom directives. To prevent the scanner from
producing erroneous results when encountering incompatible Verilog
code, the two directives \startskip and \stopskip can be used to skip
certain portions of the code. In this way, a Verilog file containing a few
incompatible statements can be documented, although the documentation
may be incomplete. The example in figure 1 shows how to use \start-
skip and \stopskip.

...
wire a; //This will be documented as usual.

//! \startskip

//Multidimensional arrays are new in Verilog-2001.
//This will be ignored by the scanner.
reg [15:0] array [0:255][0:255];

//! \stopskip

reg [7:0] c; //This will be documented as usual.
...

Figur 1: An example of skipping code using special directives.
Chapter 4: Makeshift solutions 17

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
To eliminate the need for these directives, the scanner should be made com-
patible with the latest Verilog standard. See section 3.1.3 "F-13 Verilog-2001
compatible parser (extra level)" .
18 Chapter 4: Makeshift solutions

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
5 Extensions and improvements

This section contains suggestions on how the product can be extended and
improved in the future. These suggestions can be used as requirements in a
future project.

5.1 Extensions to the implementation

This section contains suggestions for extensions to the product. Other pos-
sible extensions are the requirements that were not implemented in this
project, listed in section 3.1 "Requirements not met" .

5.1.1 Translation to other languages

The Verilog concepts introduced to Doxygen have been translated only to
English and Swedish. To make them usable in other languages, all the other
translator classes in Doxygen should be updated.

5.1.2 Graphical representation of instantiations

When a modules are instantiated from within other modules, a graphical
representation of their connection could be presented in the documenta-
tion. The diagram could then show which ports are connected and possibly
suggest a layout to minimize wiring distances.

5.1.3 Highlighted code in the documentation

Doxygen has a dedicated code scanner, code.l, for C++ to produce high-
lighted code that is included in the documentation. Keywords, classes and
functions are all printed in different colors, making them easy to distin-
guish. This could be also be done for Verilog code, showing e.g. modules,
ports and variables in different colors.

5.1.4 Verilog-2005 compliance

Apart from making the Verilog front-end compatible with the Verilog-2001
specification, as mentioned in section 3.1.3, it should also be made compa-
tible with Verilog-2005, or IEEE 1364-2005, when this upcoming standard is
finalized. The approach should be the same as with the Verilog-2001 comp-
liance update.

5.2 Improvements to current implementation

This section suggests how the current implementation and its requirements
can be refined. Other possible improvements are to fix the errors and limi-
tations in the current implementation. These are listed in section 3.2
"Known errors and limitations" .

5.2.1 More thorough documentation

The documentation of Verilog source code could be made more thorough,
to include more Verilog constructs, e.g. named sequence blocks, functions
and user-defined primitives. These are currently just skipped by the Verilog
front-end. At least functions should be relatively easy to document,
mimicking how Doxygen documents C++ functions. Other Verilog con-
Chapter 5: Extensions and improvements 19

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
cepts may be harder to document and may require the introduction of new
data types in Doxygen, as mentioned in section 4.1.

5.2.2 More custom directives

More custom directives could be made available to provide even more
information in the documentation.

5.3 Extending and improving Doxygen

The suggested extensions and improvements given in the previous sections
mainly apply to the "Wazzup DOC?!" Verilog documentation tool. Since the
tool is based on and integrated to Doxygen, it relies on the capabilities of
that program. Doxygen has its own ToDo/wishlist on its homepage, [van
Heesch]. It includes requests for the support of more programming langua-
ges, more documentation formats, and much more.
20 Chapter 5: Extensions and improvements

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
6 Installation and development

This chapter describes the installation procedure for the product. It also
gives an overview of the code structure. Finally, the prerequisites for
further development are specified.

6.1 Installation prerequisites

This section lists the software that is required or optional to install and run
the product. Note that the product has only been tested with the software
versions mentioned here. The product is not guaranteed to be compatible
with other versions of the software.

6.1.1 Required software

These software packages are required to install and run the product. The
product may work with other versions of the software packages, but has
only been tested with the versions given below. See also the Doxygen
installation requirements at [van Heesch].

• A UNIX-like operating system. Sun Solaris and GNU/Linux are
known to work.

• The "Wazzup DOC?!" product software: a fork of Doxygen v1.4.5.
• The GNU tools flex v2.5.4, bison v1.875d and make v3.80.

Available from [FSF]. Newer versions of flex are known not to work.
• GNU gcc (the GNU compiler collection) v3.3.6.

Available from [FSF].
• Perl v5.8.6.

Available from [O’Reilly].

6.1.2 Optional software

This software is not necessary to install and run the product, but certain
features may not be available without them.

• Graphviz dot v1.16
Available from [Graphviz]. The dot tool of the Graphviz package is
necessary to generate graphs in the documentation.

• LaTeX
Available from [LaTeX3]. Necessary for LaTeX output.

• A web browser
Necessary to view HTML output.

• A Subversion client, a version control system, if you have access to
and want to check out the latest revision from the ISY Subversion ser-
ver. Version 1.2.3 is known to work.
Available from [Subversion].

6.2 Installation procedure
1. Install all the required software packages or check that they are availa-

ble at your site. Installation instructions are available at the respective
home pages if you want to install them manually. All the required soft-
ware components are known to be available as packages for most
GNU/Linux systems.
Chapter 6: Installation and development 21

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
2. Copy the "Wazzup DOC?!" tool from the CD to your hard drive...
3. ...or check out the latest revision from the ISY Subversion server if it is

available to you:
$ svn checkout https://svn.isy.liu.se/hdldoctool/

doxygen --username <your username>

4. Change to the directory of the tool and run the configure script:
$./configure

5. Now run make to build the system:
$ make

6. The compiled binary file can be found in the bin/ directory. You
might want to copy it to where you like to keep executable files:
$ sudo cp bin/doxygen /usr/bin/doxygen-verilog

7. Now you are ready to run the tool, see the next section.

6.3 User’s guide

As the tool is not ready for prime-time, it is merely a study of Doxygen’s
suitability as a base for a Verilog documentation tool, no proper user’s
guide will be written. This section lists and details the steps a developer or
tester has to go through to generate a piece of documentation for a Verilog
project, and may serve as a brief user’s guide.

6.3.1 Prerequisites

1. Some experience of using Doxygen. Read the introductory chapters in
Doxygen’s manual, [van Heesch], and try it out on a C++ or Java pro-
ject. Virtually all the configuration options and behaviour are the same
in the extended version of Doxygen as in an original Doxygen installa-
tion. The product described in this document, "Wazzup Doc?!" has all
the functionality of a regular Doxygen and can be used for documenta-
tion of for example C++ code.

2. A Verilog project to document: A directory with one or more Verilog
(.v) files optionally organized in subdirectories. The Verilog code
should adhere to the 1995 edition of the Verilog standard. Documenta-
tion should be placed in comments following the usual Doxygen prac-
tices, as described in section 5.2.2 of the architecture specification
[Norling, 2005]. All directives described in Doxygen’s manual may be
used, e.g. to specify the author, todo lists, etc.

3. A compiled version of the tool, as described in section 6.2. The execu-
table file will hereafter be referred to as doxygen-verilog.

6.3.2 Generating documentation for a Verilog project

1. Let Doxygen generate a default configuration file (Doxyfile) for you:
$ doxygen-verilog -g
22 Chapter 6: Installation and development

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
2. A few settings will have to be changed in the default configuration file:

3. Run Doxygen to generate the documentation:
$ doxygen-verilog

4. View the generated documentation by pointing a web browser to the
html directory that was created for you, or print the latex documenta-
tion:
$ cd latex/
$ make ps
$ lp refman.ps

6.4 Code structure

The code structure has adopted the rather flat structure of Doxygen, since
there are only a few completely new files for the actual Verilog language
scanner. The rest of the product code is implemented as changes or addi-
tions in existing Doxygen files.

Doxygen’s source tree is organized as follows:

Configuration directive and value Explanation

OPTIMIZE_OUTPUT_FOR_VERILOG = YES Causes names of concepts in the gene-
rated documentation to match Verilog
lingo better.

EXTRACT_ALL = YES Generate documentation for modules
and nets that have no comments.

EXTRACT_PRIVATE = YES Document wires, regs, parameters and
so on.

HIDE_SCOPE_NAMES = YES Don’t show what module a wire is in.

RECURSIVE = YES Set to YES if your project is divided
into several directories.

HAVE_DOT = YES Set to YES if you have Graphviz instal-
led and want module hierarchy graphs
to be generated.

Directory Purpose

doxygen/ Contains top-level makefile and configuration script.

doxygen/src All source files are found here, flat structure.

doxygen/bin Generated executables are put here.

doxygen/lib Generated library files are put here.

doxygen/objects Compiled object files are put here.

doxygen/packages Automatically generated RPM package.

doxygen/qtools An old version of a subset of Qt, portability layer.

doxygen/tmake An old version of tmake, Qt’s (old) build system.

doxygen/wintools Tools for building Doxygen in Windows.
Chapter 6: Installation and development 23

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
For a list of the correspondances between modules and source files in dox-
ygen/src, see the tables on page 29 and on.

6.5 Development prerequisites

If you have installed and run "Wazzup Doc?!" as described in the previous
few sections, and have a solid understanding of the C++ language and the
GNU Flex scanner generator, all you need to continue the development of
"Wazzup Doc?!" is in place.

6.5.1 Checking out a revision from the Subversion server

To check out the latest revision from the ISY Subversion server:

$ svn checkout https://svn.isy.liu.se/hdldoctool/
doxygen --username <your username>

If you want a specific revision, use the -r <rev#> flag to svn.

6.5.2 Build system

The build system is based on make and Qt’s tmake. If you need to add new
source or header files, they should be added to libdoxygen.pro. The
makefiles will be updated to include the new files when make is run.

Initially, the configure script and make needs to be run in doxygen/. To
recompile the project, just run make in doxygen/ or doxygen/src/. This
will create the archive (library) file libdoxygen.a and link it together
with a main() routine to create the doxygen executable.

6.5.3 Checking in changes

Please refer to Subversion’s reference manual, at [Subversion], for a des-
cription of how to add and check in files to the repository.

doxygen/libmd5 MD5 message digest algorithm.

doxygen/libpng PNG image compression algorithm.

Directory Purpose
24 Chapter 6: Installation and development

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
7 Testing

7.1 General testing information

The testing has been divided into 4 major sections: unit testing, module tes-
ting, integration testing and system testing. The planning and the results of
these tests are available in the test plan [Åberg, 2005:1] and test report
[Åberg, 2005:2], respectively.

The test personnel have mainly been TM, DOC, CRM and QM. TM has
been in charge of the planning and preparation of the testing, while DOC
and CRM have been writing the test skripts. QM has mainly done the static
code inspection due to his programming experience.

7.2 Test documents

The existing test documents are:

• Test plan [Åberg, 2005:1]
• Test report [Åberg, 2005:2]

These documents will be delivered on the CD together with the program.
They will be placed in /test/documents/.

7.3 Test scripts

The test scripts used during the test phase will be placed on the CD under /
test/testscript/.

7.3.1 Treeprinter

Compile the test script together with Doxygen and the Treeprinter. The
Treeprinter is called when the test script is run.

7.3.2 Verilog scanner

Compile parse-and-print.cpp together with Doxygen and the Verilog
scanner. Parse-and-print takes a Verilog file as an argument and uses the
Tree printer to visualize it.

7.3.3 Preprocessor

Compile preprocess.cpp together with Doxygen and the preprocessor.
Preprocess takes a Verilog file as an argument and produces another Veri-
log file without any preprocessing syntaxes.
Chapter 7: Testing 25

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
26 Chapter 7: Testing

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
8 References

8.1 Internal documents
• [Hilding, 2005] Hilding, Daniel, "Requirements specification" (2005)
• [Lissing, 2005] Lissing, Johan, "Design specification" (2005)
• [Norling, 2005] Norling, Jonas, "Architecture specification" (2005)
• [Åberg, 2005:1] Åberg, Eric, "Test plan" (2005)
• [Åberg, 2005:1] Åberg, Eric, "Test report" (2005)

8.2 External documents
• [FSF] Free Software Foundation, "Free Software Directory" (2005)

WWW: http://directory.fsf.org/
• [Graphviz] AT&T, "Graphviz - Graph Visualization Software" (2005)

WWW: http://www.graphviz.org
• [LaTeX3] LaTeX Project, "LaTeX - a document preparation system"

(2005) WWW: http://www.latex-project.org/
• [O’Reilly] O’Reilly Media Inc., "The Source for Perl" (2005)

WWW: http://www.perl.com
• [Subversion] CollabNet, "Subversion" (2005)

WWW: http://subversion.tigris.org
• [van Heesch] van Heesch, Dimitri, "Doxygen" (2005)

WWW: http://www.doxygen.org
Chapter 8: References 27

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
28 Chapter 8: References

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
Appendix A Source files

The following tables show which of the most important source files that
belong to which module. The status of each file is classified as new (written
from scratch), changed (modified Doxygen files) or unchanged (original
Doxygen files). Files belonging to Doxygen modules irrelevant to the "Waz-
zup DOC?!" product, such as front-ends for other programming languages
or simple helper classes, are omitted.

A.1 Preprocessor

A.2 Verilog front-end

File name Status

define.cpp Unchanged

define.h Unchanged

pre.cpp Changed (generated from pre.l)

pre.h Unchanged

pre.l Changed

Table 9: The source files belonging to the preprocessor module.

File name Status

commentscan.cpp Unchanged

commentscan.h Unchanged

commentscan.l Unchanged

debug.cpp Changed

debug.h Changed

entry.cpp Unchanged

entry.h Changed

parserintf.h Unchanged

verilogscanner.cpp New (generated from verilogscanner.l)

verilogscanner.h New

verilogscanner.l New

Table 10: The source files belonging to the Verilog front-end module.
Appendix A: Source files A29

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
A.3 Tree printer

File name Status

treeprinter.h New

treeprinter.cpp New

Table 11: The source files belonging to the Tree printer module.
A30 Appendix A: Source files

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
A.4 Data organizer

File name Status

classdef.cpp Changed

classdef.h Changed

config.cpp Changed (generated from config.l)

config.h Unchanged

config.l Changed

defgen.cpp Unchanged

defgen.h Unchanged

definition.cpp Unchanged

definition.h Unchanged

dirdef.cpp Unchanged

dirdef.h Unchanged

doxygen.cpp Changed

doxygen.h Unchanged

filedef.cpp Unchanged

filedef.h Unchanged

groupdef.cpp Unchanged

groupdef.h Unchanged

main.cpp Unchanged

memberdef.cpp Changed

memberdef.h Unchanged

membergroup.cpp Unchanged

membergroup.h Unchanged

memberlist.cpp Unchanged

memberlist.h Unchanged

pagedef.cpp Unchanged

pagedef.h Unchanged

Table 12: The source files belonging to the data organizer module.
Appendix A: Source files A31

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
A.5 Output generator

File name Status

docparser.cpp Unchanged

docparser.h Unchanged

doctokenizer.cpp Unchanged

doctokenizer.h Unchanged

doctokenizer.l Unchanged

doxygen_css.h Unchanged

doxygen.css Unchanged

htmlgen.cpp Unchanged

htmlgen.h Unchanged

index.cpp Unchanged

index.h Unchanged

latexgen.cpp Unchanged

latexgen.h Unchanged

outputgen.cpp Unchanged

outputgen.h Unchanged

outputlist.cpp Unchanged

outputlist.h Unchanged

translator_adapter.h Unchanged

translator_br.h Unchanged

translator_ca.h Unchanged

translator_cn.h Unchanged

translator_cz.h Unchanged

translator_de.h Unchanged

translator_dk.h Unchanged

translator_en.h Changed

translator_es.h Unchanged

translator_fi.h Unchanged

translator_fr.h Unchanged

translator_gr.h Unchanged

translator_hr.h Unchanged

translator_hu.h Unchanged

translator_id.h Unchanged

translator_it.h Unchanged

Table 13: The source files belonging to the output generator module.
A32 Appendix A: Source files

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Technical documentation
Johan Lissing

2005-12-12 / v 1.1
translator_je.h Unchanged

translator_jp.h Unchanged

translator_ke.h Unchanged

translator_kr.h Unchanged

translator_lt.h Unchanged

translator_nl.h Unchanged

translator_no.h Unchanged

translator_pl.h Unchanged

translator_pt.h Unchanged

translator_ro.h Unchanged

translator_ru.h Unchanged

translator_se.h Changed

translator_si.h Unchanged

translator_sk.h Unchanged

translator_sr.h Unchanged

translator_tw.h Unchanged

translator_ua.h Unchanged

translator_za.h Unchanged

translator.cpp Unchanged

translator.h Unchanged

File name Status

Table 13: The source files belonging to the output generator module.
Appendix A: Source files A33

