
Summary

This document specifies the design to be used for the Verilog documenta-
tion tool "Wazzup DOC?!", developed by PUM group 12. The design is
intended to ease and control the implementation of the product.

The product will be realized as an extension to Doxygen, an existing docu-
mentation tool for C++, Java, and a few other programming languages.
Therefore, a major part of this document is dedicated to describing how
Doxygen is designed.

Design specification

Author: Johan Lissing

Version: 1.1

Date: 2005-11-27

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
Project identity

Project group

PUM 12 2005
Linköpings tekniska högskola

Institutionen för datavetenskap (IDA)

Project members

Mailinglist for group

pum12@und.ida.liu.se

Web page

http://www-und.ida.liu.se/~pum12/

Customer

Per Karlström, ISY LiU

Customer contact person

Per Karlström, 013-28 29 03, perk@isy.liu.se

Project supervisor

David Broman, 013-28 57 24, davbr@ida.liu.se

Examiner

Robert Kaminski, 013-28 24 57, robka@ida.liu.se

Name Area of responsibility Telephone E-mail

Martin Jormedal Project leader (PL) 073-3121319 ook4mi@gmail.com

Daniel Hilding Customer relations (CR) 070-7440440 danhi139@student.liu.se

Joakim Svartengren Documentation manager (DOC) 070-4040005 joasv190@student.liu.se

Jonas Norling Design manager (DES) 070-3904809 norling@lysator.liu.se

Johan Lissing Implementation manager (IM) 073-9036256 johli650@student.liu.se

Thobias Bergqvist Quality manager (QM) 073-6223040 thobe651@student.liu.se

Eric Åberg Test manager (TM) 070-4058130 eriab522@student.liu.se
3

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
4

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
Document History

Date Version Changes Name

2005-11-02 0.1 Document created Johan Lissing

2005-11-03 0.2 Document updated after comments. Corrected a
few spelling errors.

Johan Lissing

2005-11-04 1.0 Document updated after inspection. Extended
section 4.1.1 and section 5.6. Added
section 5.3.3. Corrected a few spelling errors.

Johan Lissing

2005-11-27 1.1 Document updated after research during imple-
mentation. Revised section 3.4. Extended
section 5. Added Appendix A.

Johan Lissing
5

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
6

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
1 Introduction.. 9

1.1 Purpose of this document.. 9

1.2 Background ... 9

1.3 Document overview ... 9
1.3.1 Introduction ... 9
1.3.2 Design philosophy... 9
1.3.3 Design decisions... 9
1.3.4 Critical parts .. 9
1.3.5 Detailed description .. 9
1.3.6 Reuse.. 9
1.3.7 User interface.. 10
1.3.8 References.. 10

1.4 Reading instructions .. 10

1.5 Document dependencies... 10

1.6 Distribution... 10

1.7 Glossary .. 10

2 Design philosophy... 13

2.1 Doxygen research ... 13

2.2 Prototype testing.. 13

3 Design decisions ... 15

3.1 Separate scanner file... 15

3.2 Scanner+parser layout .. 15

3.3 Node class... 16

3.4 Tree printer .. 16

4 Critical parts... 17

4.1 Doxygen .. 17
4.1.1 Output generation ... 17

4.2 Verilog ... 17

5 Detailed description .. 19

5.1 System overview ... 19

5.2 The preprocessor module.. 20
5.2.1 Affected classes and members... 20

5.3 Verilog front-end module ... 20
5.3.1 A Verilog parser in Flex... 21
5.3.2 Handling comments and documentation blocks 22
5.3.3 Handling custom directives ... 23
5.3.4 Constructing the AST.. 23
5.3.5 Affected classes and members... 24

5.4 Tree printer module ... 24
7

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
5.4.1 Affected classes and members... 25

5.5 Data organizer module ..25
5.5.1 The module concept ... 25
5.5.2 Instantiations of modules .. 25
5.5.3 The configuration file parser ... 25
5.5.4 Affected classes and members... 26

5.6 Output generator module...26
5.6.1 Configuration for Verilog documentation... 27
5.6.2 Fine-tuning of documentation ... 27
5.6.3 Affected classes and members... 28

5.7 Compiling and linking...28

6 Reuse ..29

6.1 Doxygen...29

6.2 Verilog front-end ..29

7 User interface ...31

7.1 User interface of the product ...31

8 References..33

8.1 Internal documents ..33

8.2 External documents ...33
8

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
1 Introduction

This chapter contains information about the disposition and contents of the
design specification. It is intended to work as a guide for the reader, as well
as anyone introducing modifications to this document.

1.1 Purpose of this document

The design specification is intended to ease and control the implementation
of "Wazzup DOC?!", a documentation tool for Verilog, developed by PUM
group 12. The document is based on the architecture specification [Norling,
2005] but will describe the design on a more detailed level. This will ensure
a functioning and well-structured implementation.

As this project is part implementation, part research, some details neces-
sary for a full implementation of the documentation tool may be omitted.
However, all pre-implementation research findings will be thoroughly des-
cribed in this document, to give any future project groups a head start for
expanding the product to a fully functional Verilog documentation tool.

The intented readers of the design specification are the implementation
team members, both in this project group and any future groups working
on the same project.

1.2 Background

For a detailed project description and background, see the requirements
specification [Hilding, 2005].

1.3 Document overview

This section describes the contents of each chapter in this document.

1.3.1 Introduction

Describes the disposition and contents of the design specification.

1.3.2 Design philosophy

Describes how the design was created and how research was done.

1.3.3 Design decisions

Presents decisions and alternate solutions to design issues.

1.3.4 Critical parts

Identifies the critical parts of the design.

1.3.5 Detailed description

An extensive description of the entire design with diagrams and detailed
information.

1.3.6 Reuse

Lists re-used code from other software.
Chapter 1: Introduction 9

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
1.3.7 User interface

Describes the user interface of the product.

1.3.8 References

Lists all referenced resources. Text within square brackets refer to this sec-
tion.

1.4 Reading instructions

As this is a highly technical document, all of it should be read for a full
understanding. For an implementation team, sections 4, 5 and 6 are of par-
ticular interest. A future project group, striving to extend or modify the
product, should read sections 2 and 3 carefully.

1.5 Document dependencies

Changes in these documents might require changes in the design specifica-
tion:

• Requirements specification [Hilding, 2005]
• Architecture specification [Norling, 2005]

Changes in the design specification might require changes in the following
documents:

• Project plan [Jormedal, 2005]
• Architecture specification [Norling, 2005]
• Technical documentation [Lissing, 2005:2]
• Test plan [Åberg, 2005]

1.6 Distribution

This document will be distributed to:

• Johan Fagerström and Jonas Wallgren, examiners of the design specifi-
cation

• David Broman, project supervisor
• Per Karlström, customer
• The project locker

1.7 Glossary

AST - Abstract Syntax Tree. A tree describing the structure of a source file.

Bison - The GNU parser generator (a variant of YACC).

Flex - The GNU lexical analyzer (a variant of lex). See [FSF].

Lexical analyzer - see scanner.

Parser - A piece of software that determines the syntactic structure of a
language.

Scanner - A piece of software that breaks down the input into word-like
tokens.
10 Chapter 1: Introduction

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
UML - Unified Modelling Language. A standard to model the structure
and behavior of a design. See [OMG].
Chapter 1: Introduction 11

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
12 Chapter 1: Introduction

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
2 Design philosophy

This chapter describes the philosophy of the design. The design is highly
affected by the fact that the project will, to a large extent, consist of
research.

2.1 Doxygen research

As the product will be both an extension and a modification to Doxygen, a
lot of research on Doxygen will have to be done. A basic investigation has
already been conducted, which came to the conclusion that Doxygen was
suitable as a product foundation.

A more in-depth research of Doxygen was made for this design specifica-
tion. The approach is described in section 2.2. One of the main goals has
been to see how all necessary modifications to Doxygen can be made with
minimum changes in its own design. This would make our product more
suitable as a patch, rather than a complete rewrite.

Some issues remain to be resolved for the implementation. This research
will be done alongside with the implementation phase.

2.2 Prototype testing

To find out how Doxygen should be modified and extended to support
Verilog source code, small prototype tests have been made to examine dif-
ferent parts of Doxygen. The results were used to make important design
decisions. The result of each prototype test is described together with the
corresponding design decision in section 3.

The tests also lead to knowledge of Doxygen’s design which was necessary
in order to write the detailed description in section 5.

Some tests made it clear that even more testing and research is necessary in
a certain parts of the system. Due to limited resources, this research was not
done in time for this design specification, but will be conducted during the
implementation phase. Such issues may be critical for the system and they
are therefore listed in section 4 "Critical parts" .
Chapter 2: Design philosophy 13

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
14 Chapter 2: Design philosophy

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
3 Design decisions

This chapter describes the decisions made in the design. Most of the deci-
sions are based on the results of the prototype tests, in accordance with our
design philosophy in section 2.2. For an illustration of how these decisions
are realised in the design, see section 5.

Decisions made on an architectural level are listed in the architecture speci-
fication [Norling, 2005]. All decisions regarding the implementation, such
as code layout and commenting, are made in the programming handbook
[Lissing, 2005:1].

3.1 Separate scanner file

For most supported languages, Doxygen uses one big scanner file. For
languages that are similar to each other, such as Java and C++, this may be
a practical approach. Since Verilog is so different from these, we would
have to do a lot of conditional testing in the file to make sure that only Veri-
log rules were applied to Verilog source code. This would make the scanner
file even larger and it would make the installation of our product difficult,
with many small changes to this file. We wanted to know if it is possible to
write the Verilog scanner as a separate file to avoid the aforementioned pro-
blems.

The prototype test showed that this is indeed possible. The Flex generated
scanner class should inherit the ParserInterface class and implement
the parseInput() method. The class is then registered as a parser in the
initDoxygen() method in doxygen.cpp.

Decision: We will use a separate scanner file for Verilog, implemented with
Flex.

The design of the scanner in the Verilog front-end is described further in
section 5.3.1.

3.2 Scanner+parser layout

In order to construct an AST representing Verilog source code, tree nodes
have to be created and linked into the tree for each syntactic construct of
the source language. This can be done either directly with C++ code in the
Flex rules in the scanner, or by first passing the scanned data (a stream of
tokens) to a parser, which then constructs the nodes.

All language front-ends in Doxygen are implemented purely as scanners
without a separate parser component. For a sense of conformity, we would
like the Verilog front-end to be implemented the same way. Another advan-
tage is the possible reuse of code from the already implemented scanners,
as mentioned in section 6.2.

A prototype test indicated that the scanner-only approach should work
well for the Verilog front-end.

Decision: The AST will be constructed with C++ code in the scanner rules.
A parser generator (such as Bison) will not be used. This design decision is
closely linked to the decision in section 3.1 "Separate scanner file" .

The design of the Verilog front-end is described further in section 5.3.
Chapter 3: Design decisions 15

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
3.3 Node class

We must also estimate if we directly can use Doxygen’s Entry class for the
AST nodes, or if we should start by implementing our own simplified node
class. The two options correspond to requirements F-5 and F-2, respecti-
vely, in [Hilding, 2005]. Using an arbitrary node class might save time in
the scanner implementation. A big drawback, however, is that all opera-
tions on the AST, such as generating output, must be adapted to the new
node class.

Testing showed that the Entry class is rather generic, but will have to be
adapted to be able to represent all constructs in the Verilog language.
However, we estimate that these changes should not be too extensive. See
section 5.

Decision: The Entry class provided by Doxygen will be used.

The design of the node class and modifications to the Entry class are further
described in section 5.

3.4 Tree printer

To be able to print the AST, in conformance with requirement F-3 in [Hil-
ding, 2005], we must determine how to construct the tree printer module
and find the most suitable place to call it.

We found that the best place to print the AST is after all input files have
been read by the scanner, and hence all AST nodes are constructed. In Dox-
ygen, this corresponds to the parseFiles() function, which has a while
loop iterating over the input files. When the loop is finished, the AST is
complete. However, to avoid too much involvement from Doxygen and
make the setup as small as possible, we decided not to integrate the tree
printer into Doxygen. Instead, a test script will be written that first scans
the source code and then instantiates and calls the tree printer.

To be able to convert the tree data into a readable form, the tree printer
module will be implemented as the class TreePrinter with the appropri-
ate functions.

Decision: The tree printer module will be implemented as a class, which
will be called from a stand-alone test script.

The design of the tree printer module is further described in section 5.3.5.
16 Chapter 3: Design decisions

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
4 Critical parts

This section identifies critical parts in the design, which we have not been
able to test and/or design. They have been considered when writing this
document and must also be kept in mind when implementing the design.

4.1 Doxygen

Doxygen itself is one big critical part. It is a rather large program written
externally, which means that it is hard to fully understand all parts of its
source code.

4.1.1 Output generation

As stated in section 5, the Entry class must be modified to be able to
handle all concepts in the Verilog language, such as the module construct.
However, the output generators must also be able to handle the correspon-
ding sections correctly. For example, there should be a module hierarchy
instead of a class hierarchy in documentation for Verilog code.

The necessary modifications to the output generator classes and functions
in Doxygen have not been fully investigated due to lack of resources. The
output generator module will be subject to further research during the
implementation phase and in the meantime this module is listed as a criti-
cal part. On a side note, the level of the output requirements (F-9 and F-11
in [Hilding, 2005]) is "Extra", and hence the module may not be implemen-
ted at all.

4.2 Verilog

It may be difficult to parse all concepts in the Verilog language. Since none
of the project members is a Verilog expert, further Verilog studies may be
required.
Chapter 4: Critical parts 17

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
18 Chapter 4: Critical parts

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
5 Detailed description

This chapter describes the design in detail. The first subsection gives an
overview of the system. Then, the internals of each module are described.
The modules are defined in [Norling, 2005].

5.1 System overview

A class diagram for the most important classes, attributes and operations is
shown in figure 1. These are the classes that will affect or will be affected by
the addition of Verilog documentation capabilities in Doxygen. All classes
belong to Doxygen’s original source code, except for VerilogLanguage-
Scanner and TreePrinter. These correspond to the Verilog front-end
module, described in section 5.3, and the tree printer module, described in
section 5.3.5. They will have to be written from scratch.

Figur 1: System overview class diagram

The notation for the class diagram is standardized UML and can be found
at [OMG].
Chapter 5: Detailed description 19

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
5.2 The preprocessor module

Before the contents of the Verilog source is scanned, any compiler directives
in the code must be preprocessed. The compiler directives can, for example,
be used to define macros and to only activate certain parts of the Verilog
code based on conditional testing. All compiler directives in Verilog start
with a grave accent, also known as "backtick", followed by a command.
This is in contrast to C++ compiler directives, which all start with the num-
ber sign #, also known as hash mark.

Doxygen is equipped with a preprocessor for C++ code. It is written as a
Flex scanner residing in pre.l, and is started with a call to its prepro-
cessFile() function. Since most of the Verilog compiler directives have
C++ equivalents, we will use the Doxygen preprocessor to preprocess Veri-
log code. A few rules and pattern will have to be added to the scanner.

5.2.1 Affected classes and members

5.3 Verilog front-end module

Figur 2: UML diagram of the classes in the front-end module.
ParserInterface is an abstract class defining the interface that is used
by all language parsers in Doxygen. Note that the Entry class is simplified,
since it has a large number of data members that are of no interest to our
project.

The Verilog front-end module consists of the VerilogLanguageScanner
class, as shown in figure 2. This class contains one important method, par-
seInput(), as well as some auxiliary functionality.

Member Description

- New scanner rules and actions for Verilog compiler directives

Table 9: Affected members in the preprocessor module in pre.{h,l,cpp}.
20 Chapter 5: Detailed description

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
The parseInput() method, taking a buffer with source file data and a
pointer to the root of a syntax tree, calls a Flex generated scanner to do the
actual scanning and parsing.

The Verilog front-end module is defined in verilogscanner.l which is
translated by Flex into the C++ source file verilogscanner.cpp. The
affected files, classes and members are shown in section 5.3.5 "Affected
classes and members" on page 24.

5.3.1 A Verilog parser in Flex

The lexical analysis step will be implemented in Flex and the actual parsing
(building of a syntax tree) is done with embedded C++ code and ample use
of start conditions (scanner states) in Flex. See the Flex homepage [FSF] for
an introduction to GNU Flex, and the dragon book [Aho, et al] for an intro-
duction to lex and a description of lexical analyzers and parsers in general.

Suitable start conditions have been extracted from the Verilog BNF found at
[Satterlee]. The start conditions and the transitions between them are
shown in appendix A.2 and some less important start conditions are shown
in appendix A.3. The words that trigger the transitions are written on the
edges. Some transitions may be triggered by several words and these
words are grouped into patterns. An explanation of these is given in appen-
dix A.4.

The lexer/parser combination works as follows (imagine parsing a simple
Verilog file with a single module declaration containing a few wires and
instantiations of other modules):

1. The lexer is initialized in start condition Search. In this start condition,
the token module, indicating the start of a module declaration, trig-
gers a transition to ModuleDec.

2. In the ModuleDec start condition, an identifier defining the name of
the module is expected. A syntax tree node for the module definition is
prepared. The next state is ModuleArgs.

3. An argument list for a module is optional. In the ModuleArgs start
condition, either a left parenthesis or a semicolon is expected (after
whitespace is removed), indicating either the start of an argument list
or the end of the declaration.

4. If a left parenthesis is found, the ArgList state is entered. Here, a list of
identifiers is added to the module declaration tree node. When a right
parenthesis is found, the argument list has ended and the ModuleArgs
state is entered once again.

5. When the module declaration has been terminated by a semicolon, the
ModuleBody start condition is entered. In this state, the lexer looks for
all Verilog constructs that are valid in a module, such as wire defini-
tions and module instantiations.

6. When wire definitions or module instantiations are found, the NetDec
and Instantiation states are entered, respectively. When the statements
are finished, e.g. with a terminating semicolon, the ModuleBody start
condition is entered once again.

7. Upon occurance of the keyword endmodule, the module body is ter-
minated and the Search start condition is entered once again.
Chapter 5: Detailed description 21

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
The start conditions in appendix A.3 will be used for skipping irrelevant
code blocks that are terminated in a non-trivial way, e.g. not necessarily
with a semicolon.

From any of the start conditions described here, there may also be transi-
tions via global scanner rules to documentation start conditions when
documentation blocks are encountered. This is covered in the next section.
There is also a pair of global rules for skipping entire sections of the code
between two special markers. This can be useful as a temporary solution if
the scanner produces erroneous results from certain types of code.

5.3.2 Handling comments and documentation blocks

A description of Verilog source code and documenting comments och more
introductory nature can be found in the architecture specification [Norling,
2005].

The comment formats recognized in the source code are:

The documentation found in such documentation blocks pertain to the con-
struct that follows them. To indicate that a documentation block belongs to
the preceding construct, the documentation is prefixed with the ’<’ symbol.
This is useful when adding documentation for wire declarations as this
example shows:

wire readStrobe; ///< This is a wire

Comments in the Verilog source code are caught by global rules (i.e. rules
that are valid in all start conditions). The start conditions CommentLine
and CommentRegion are entered using the yy_push_state() function
meaning that the previous start condition is put on a start condition stack
before the new one is entered. The old start condition can then be restored
by calling yy_pop_state(). The start conditions that are used for hand-
ling comments simply skip all input up to the end of the comment.

If the comment is discovered to be a documenting comment, control is han-
ded over to one of a set of special start conditions that extract the documen-
tation and add it to the corresponding tree node. Documentation text is
handed over to handleCommentBlock(), a global function in the scanner
file, which calls parseCommentBlock(), as described in section 5.3.3. A
diagram with details of the involved states and transitions is shown in
figure 3.

// ... C style comment. Terminated at line end.

/* ... */ C++ style comment.

/// ... Documentation line. Terminated at line end.

//! ... Documentation line. Terminated at line end.

/** ... */ Documentation block.

/*! ... */ Documentation block.
22 Chapter 5: Detailed description

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
Figur 3: Start conditions involved in comment and documentation parsing. Last-
State is the state that was active when the comment was encountered, it is pushed
onto the start condition stack. The edges show the symbols that trigger transitions

to other states, in lex syntax (i.e. the vertical bar represents an OR-function and the
parenthesis are grouping operators). The actual documentation is extracted in the

four bottom states. When all is finished, LastState is popped and entered.

5.3.3 Handling custom directives

The comment lines and regions described in the previous section may con-
tain custom directives, as defined in [Norling, 2005]. The whole documen-
tation block, together with the current Entry node, is handed to
parseCommentBlock() in the dedicated comment scanner. This scanner
is defined in commentscan.l, and searches for directives in the block.

When a directive is found, the matching section in the current Entry node
is updated with the directive information.

Some of the directives in [Norling, 2005], such as \author, are already
supported by Doxygen, since they are applicable to several languages.
However, the scanner will have to be extended with rules to support the
new, Verilog-specific, directives.

The following directives will be implemented:

• \author - already in Doxygen
• \date - already in Doxygen
• \bug - already in Doxygen
• \clock - new scanner rule needed
• \reset - new scanner rule needed
• \comb - new scanner rule needed
• \state - new scanner rule needed
• \class - scanner rules for the Doxygen group concept will be used or

adapted

5.3.4 Constructing the AST

As the scanner described in section 5.3.1 works its way through the source
it has a pointer, current, to the Entry node it is currently entering data
in. As soon as the node data is complete, e.g. after a wire declaration has

LastState

CommentLine

//

CommentRegion

/*\n

DocLine

!|/

AfterDocLine

(!|/)<

\n \n

*/

DocRegion

!|*

AfterDocRegion

(!|*)<

*/ */
Chapter 5: Detailed description 23

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
terminated, a new Entry node is added to the AST and the current poin-
ter is redirected to the new node.

5.3.5 Affected classes and members

5.4 Tree printer module

Figur 4: UML diagram of the TreePrinter class that is used to
print a human-readable representation of a syntax tree.

The tree printer module is implemented as a stand-alone class, TreePrin-
ter (see figure 4). Apart from the constructor, it has one public function,
print(), which is called when all Verilog source files have been scanned
by the Verilog front-end. The print() function takes a pointer to the root
node (class Entry) of the AST and an ostream (output stream) reference.
The AST is traversed, and each node is printed to the ostream. A typical
call is

TreePrinter tp();
tp.print(std::cout, rootPtr);

where rootPtr has the type Entry*.

Member Description

- New scanner rules

parseInput() Main parse function

needsPreprocessing() Unused inherited function

parseCode() Unused inherited function

parsePrototype() Unused inherited function

resetCodeParserState() Unused inherited function

Table 10: Affected members in the VerilogLanguageScanner class in
verilogscanner.{h,l,cpp}.

Member Description

Sections New enumeration values for Verilog module section and
Verilog module documentation section

Table 11: Affected members in the Entry class in entry.{h,cpp}.
24 Chapter 5: Detailed description

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
5.4.1 Affected classes and members

5.5 Data organizer module

The data organizer module is responsible for the program flow in Doxygen.
In the current version of Doxygen, the following steps are taken to parse a
set of input files and generate documentation from them:

1. All global structures and variables are initialized. Parser modules are
registered here.

2. The configuration file is parsed.
3. Input files are parsed in parseInput() and parseFiles(), leaving

a tree of Entry nodes for the subsequent steps.
4. The Entry tree is traversed several times in search for all declarations

of classes, namespaces and so on. This step leaves a number of dictio-
naries (lists) of ClassDef instances and similar objects.

5. The documentation is written. This step is driven by generateOut-
put() which calls a number of functions for writing documentation
for a number of constructs. The actual documentation strings are gene-
rated by ClassDef and its sibling classes.

To represent the Verilog constructs that are necessary to generate useful
documentation, some changes and extensions will be made to the data
organizer module, as described in the following subsections.

5.5.1 The module concept

Verilog’s module concept is represented as a new Sections enumeration
value, MODULE_SEC, in the Entry class (entry.{h,cpp}) and a new Com-
poundType enumeration value is added to ClassDef (class-
def.{h,cpp}). Support functions are updated to handle conversions
between them.

5.5.2 Instantiations of modules

Requirement F-7 (at the extra level) calls for a graph (presented graphically
or otherwise) of module instantiations in the system described by the Veri-
log source code. To support this, a class representing a module instantia-
tion, InstantiationInfo, is defined. A list of such objects is held in an
Entry and a ClassDef.

5.5.3 The configuration file parser

The "writing part" of the configuration file parser needs to be extended. See
section 5.6.1.

Member Description

print() Main print function

Table 12: Affected members in the TreePrinter class
treeprinter.{h,cpp}.
Chapter 5: Detailed description 25

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
5.5.4 Affected classes and members

5.6 Output generator module

Output generation in Doxygen is initiated by the generateOutput()
function. A list with OutputGenerators, one for each output format, is
traversed and called for each construct to be output. How each construct
(e.g. a class) is output, is defined in the corresponding construct definition
class (e.g. ClassDef, which defines a compound, such as a class or names-
pace). Hence, we must add knowledge of the module concept to Class-
Def. The Verilog data types wire and register may utilize the MemberDef
class, since it allows generic data types.

Member Description

CompoundType New enumeration
value for Verilog
module section

compoundTypeString() New string for Veri-
log module

qualifiedNameWithTemplateParameters() New scope separa-
tor string for Verilog

Table 13: Affected members in the ClassDef class in
classdef.{h,cpp}.

Member Description

writeDocumentation() Prevent Doxygen from writing "[private]"
after Verilog variables

Table 14: Affected members in the MemberDef class in
memberdef.{h,cpp}.

Member Description

convertToCompoundType() Add conversion between Verilog
module section and compundtype

initDoxygen() Register Verilog scanner

Table 15: Affected members in doxygen.cpp.

Member Description

check() Add Verilog source file extension

create() Add Verilog output optimization option

Table 16: Affected members in the Config class in config.{h,l,cpp}.
26 Chapter 5: Detailed description

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
In order to add a section in the output data for module instantiations, met-
hods will have to be added to the output generator classes as well as the
translation interface. The details of the necessary modifications will be
investigated at a later date. Therefore, this module is included in the Criti-
cal parts chapter, section 4.1.1 "Output generation" .

5.6.1 Configuration for Verilog documentation

The configuration file, Doxyfile, is created when Doxygen is run with the
-g flag. It allows the user to set numerous options regarding which files
and which language constructs to document and much more. Two of the
configuration options are the boolean items OPTIMIZE_OUTPUT_FOR_C
and OPTIMIZE_OUTPUT_FOR_JAVA. When on of them is set to YES, the
output documentation will be tailored to the selected language. We may
use a similar approach with an OPTIMIZE_OUTPUT_FOR_VERILOG
option, to be able to make the documentation more suitable for Verilog.
This option, and an explanatory information text, will be added to the con-
figuration file parser. The parser, config.l, is used to both read and write
configuration file entries.

5.6.2 Fine-tuning of documentation

Most headings in the documentation are not affected by the addition of the
new module compound type. The headings must be changed to reflect the
Verilog language. For example, the heading "Member list" should be chan-
ged to "Signal list". The strings used in the headings are fetched from func-
tions in the active translator class, based on the users selection of language.
At least the english translator, translator_en.h, should be extended with
alternative text strings suitable for Verilog documentation. The configura-
tion setting OPTIMIZE_OUTPUT_FOR_VERILOG will be used to determine
which string a function should return.
Chapter 5: Detailed description 27

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
5.6.3 Affected classes and members

Table 17: Affected members in the TranslatorEnglish and TranslatorSwedish classes in
translator_en.h and translator_se.h, respectively.

5.7 Compiling and linking

The changes and additions to Doxygen will be introduced into the source
tree of the latest version of Doxygen available when the development is
started. Doxygen’s build system, using a combination of make and tmake
(Trolltech’s predecessor to qmake), will be used as it is. The build system
realizes, in essence, the following make rules:

• Run Flex on *.l, generating C++ files.
• Compile *.cpp.
• Put all object files in libdoxygen.a, except for main.o.
• Link libdoxygen.a, main.o and a few auxiliary libraries into an

executable.

This building scheme is quite flexible and allows for linking the modules
we are constructing to module testbenches.

Member Description

trMemberDataDocumentation() Adapt return string to Verilog

trListOfAllMembers() Adapt return string to Verilog

trMemberList() Adapt return string to Verilog

trThisIsTheListOfAllMembers() Adapt return string to Verilog

trIncludingInheritedMembers() Adapt return string to Verilog

trCompoundList() Adapt return string to Verilog

trCompoundMembers() Adapt return string to Verilog

trCompoundListDescription() Adapt return string to Verilog

trCompoundMembersDescription() Adapt return string to Verilog

trCompoundIndex() Adapt return string to Verilog

trClassDocumentation() Adapt return string to Verilog

trCompounds() Adapt return string to Verilog

trCompoundReference() Adapt return string to Verilog

trGeneratedFromFiles() Adapt return string to Verilog

trPublicAttribs() Adapt return string to Verilog

trClasses() Adapt return string to Verilog

trClass() Adapt return string to Verilog
28 Chapter 5: Detailed description

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
6 Reuse

This section lists software elements that can be reused when implementing
the product.

6.1 Doxygen

Naturally, a large portion of Doxygen can and will be reused for the pro-
duct. The data organizer and output generator modules will almost enti-
rely consist of unmodified Doxygen code. The necessary modifications are
described in the corresponding subsections of section 5 "Detailed descrip-
tion" .

6.2 Verilog front-end

The syntax rules of the scanner in the Verilog front-end module will have to
be written from scratch. However, the associated C++ code to create AST
nodes can be adopted from other scanners used in Doxygen. The Python
scanner in Doxygen is, just as our Verilog scanner will be, implemented as a
stand-alone scanner file, which makes it a good role model.
Chapter 6: Reuse 29

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
30 Chapter 6: Reuse

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
7 User interface

This chapter describes the user interface of the product.

7.1 User interface of the product

The product is an extension to Doxygen, an existing software. The extensi-
ons and modifications needed for Verilog support do neither require nor
justify modifications to Doxygen’s user interface. For more information on
Doxygen’s user interface, see [van Heesch, 2005]. Use cases are described in
the requirements specification [Hilding, 2005].
Chapter 7: User interface 31

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
32 Chapter 7: User interface

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
8 References

8.1 Internal documents
• [Hilding, 2005] Hilding, Daniel, "Requirements specification" (2005)
• [Jormedal, 2005] Jormedal, Martin, "Project plan" (2005)
• [Lissing, 2005:1] Lissing, Johan, "Programming handbook" (2005)
• [Lissing, 2005:2] Lissing, Johan, "Technical documentation" (2005)
• [Norling, 2005] Norling, Jonas, "Architecture specification" (2005)
• [Åberg, 2005] Åberg, Eric, "Test plan" (2005)

8.2 External documents
• [Aho, et al] Aho, Sethi, Ullman, "Compilers: principles, techniques and

tools" (1986, 2003)
• [FSF] Free Software Foundation, "Flex GNU Project" (2005)

WWW: http://www.gnu.org/software/flex
• [OMG] Object Management Group, "UML" (2005),

WWW: http://www.uml.org
• [Satterlee] Satterlee, Chris, "Verilog Formal Syntax Specification" (1995)

WWW: http://www.verilog.com/VerilogBNF.html
• [van Heesch, 2005] van Heesch, Dimitri, "Doxygen" (2005), software

version 1.4.4, WWW: http://www.doxygen.org
Chapter 8: References 33

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
34 Chapter 8: References

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
Appendix A Verilog front-end scanner

This appendix contains graphs that illustrate the tranistions between start
conditions in the scanner of the Verilog front-end. The start conditions are
represented by nodes and the patterns that trigger the transitions are writ-
ten on the directed edges. An explanation of the patterns is given in appen-
dix A.4. A bold outline of a node indicates that the start condition it
represents can create new Entry nodes in the AST.

A.1 Entering a module

Figur 1: A transition graph for the scanner entering a Verilog module. The scanner is initiated in the Search
start condition. The graph continues in figure 2 with transitions from the ModuleBody start condition.
Appendix A: Verilog front-end scanner A35

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
A.2 Inside a module

Figur 2: A transition graph for the scanner inside a Verilog module. Continued from figure 1. Transitions
from the Statement start condition are shown in figure 3.
A36 Appendix A: Verilog front-end scanner

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
A.3 The Statement start condition

Figur 3: A transition graph for the scanner in the Statement start condition. Continued from figure 2.
Appendix A: Verilog front-end scanner A37

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Design specification
Johan Lissing

2005-11-27 / v 1.1
A.4 Scanner patterns

The following table defines the patterns that are used to trigger transitions
between start conditions in the scanner. The definitions are only semi-for-
mal and do not follow Flex syntax rules.

Pattern Definition

IDENTIFIER At least one letter or digit. Defined in
[Satterlee]

PORTKEYWORD input, output, inout

NETKEYWORD wire, tri, tri1, supply0, wand, triand,
tri0, supply1, wor, trior, trireg, reg,
parameter

NUMTYPEKEYWORD time, integer, real

BEHAVIORALKEYWORD initial, always

SIMPLEMODULEITEM assign, defparam, event, {GATEKEY-
WORD}

SIMPLESTATEMENTKEYWORD disable, assign, deassign, force, rele-
ase, ->

CASEKEYWORD case, casex, casez

LOOPKEYWORD repeat, while, for, wait

ASSIGNMENTOPERATOR =, <=

NUMBER An optional numeric base followed
by at least one digit. Defined in [Sat-
terlee].

GATEKEYWORD and, nand, or, nor, xor, xnor, buf,
bufif0, bufif1, not, notif0, notif1, pull-
down, pullup, nmos, rnmos, pmos,
rpmos, cmos, rcmos, tran, rtran,
tranif0, rtranif0, tranif1, rtranif1

Table 18: Patterns for triggering scanner transitions. Options are separated
by commas.
A38 Appendix A: Verilog front-end scanner

