
Abstract

This document is a description of the architecture of the Verilog documen-
tation tool that is to be developed for the department of electrical enginee-
ring at Linköping University. As such, it is an extension to the requirements
specification [Hilding, 2005] detailing the architecture of a system imple-
menting the given requirements.

The tool will be realized as an extension to Doxygen, an existing tool for
generation of documentation from code written in C, C++, Java and a
handful of other languages.

This document describes the architecture of the system, as well as the
design decisions that have been made in order to arrive at this architecture.
The intended readers are the developers of the system as well as the custo-
mer.

Architecture specification

Author: Jonas Norling

Version: 1.0

Date: 2005-10-11

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
Project identity

Project group

Wuzzup DOC
PUM 12 2005

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)

Project members

Mailinglist for group

pum12@und.ida.liu.se

Web page

http://www-und.ida.liu.se/~pum12/

Customer

Per Karlström, Computer Engineering, ISY LiU

Customer contact person

Per Karlström, 013-28 29 03, perk@isy.liu.se

Project supervisor

David Broman, 013-28 57 24, davbr@ida.liu.se

Examiner

Robert Kaminski, 013-28 24 57, robka@ida.liu.se

Name Area of responsibility Telephone E-mail

Martin Jormedal Project leader (PL) 073-3121319 ook4mi@gmail.com

Daniel Hilding Customer relations (CRM) 070-7440440 danhi139@student.liu.se

Joakim Svartengren Documentation manager (DOC) 070-4040005 joasv190@student.liu.se

Jonas Norling Design manager (DES) 070-3904809 norling@lysator.liu.se

Johan Lissing Implementation manager (IM) 073-9036256 johli650@student.liu.se

Thobias Bergqvist Quality manager (QM) 073-6223040 thobe651@student.liu.se

Eric Åberg Test manager (TM) 070-4058130 eriab522@student.liu.se
3

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
4

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
Document history

Date Version Changes Name

2005-09-23 0.1 Document created Jonas Norling

2005-09-30 0.2 Document revised after internal inspection. Corrected
some spelling errors and added a reference chapter.

Johan Lissing

2005-10-07 0.3 Document revised after opposition.

The tree printer module has been added. The verilog
front-end module has been divided into sub-modules
and a description of the AST datatype has been added
along with an example tree (section 4.3.5) and an
example of the debug output (section 4.3.6). The
module interfaces chapter has been extended with a
definition of the comment formats allowed in the
source code.

Minor changes and clarifications have been introduced
in most parts of the document.

Jonas Norling

2005-10-11 1.0 Document revised after internal inspection.

The section on testability has been updated to reflect
the added tree printer module. Minor spelling mista-
kes corrected.

Jonas Norling
5

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
6

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
1 Introduction .. 11

1.1 Purpose of this document .. 11

1.2 Document overview ... 11
1.2.1 Introduction.. 11
1.2.2 System overview ... 11
1.2.3 Design decisions ... 11
1.2.4 Architectural description .. 11
1.2.5 Module interfaces .. 11
1.2.6 File formats.. 11
1.2.7 Code libraries and components..................................... 11
1.2.8 Design guidelines .. 11
1.2.9 Connection to requirements .. 12
1.2.10 References .. 12

1.3 Related documents.. 12

1.4 Reading instructions .. 12

1.5 Document dependencies ... 12

1.6 Distribution... 12

1.7 Glossary... 13

2 System overview .. 15

2.1 Background.. 15

2.2 Goal of project ... 15

2.3 Users and environment.. 15

2.4 Properties of the system.. 15

3 Design decisions.. 17

3.1 Platform ... 17

3.2 Languages and tools ... 17

4 Architectural description... 19

4.1 Doxygen’s architecture .. 19

4.2 Our architecture, an extension to Doxygen 20
4.2.1 Verilog front-end.. 20
4.2.2 Tree printer.. 20
4.2.3 Data organizer... 21
7

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
4.2.4 Output generator ...21

4.3 The AST datatype ... 21
4.3.1 Usage ..21
4.3.2 Composition...22
4.3.3 Class Entry: a tree node ..22
4.3.4 Class Argument: a generalized argument22
4.3.5 Mapping to Verilog code, an example22
4.3.6 An output example...23

4.4 Alternative architectures.. 24
4.4.1 Filter to Doxygen ...24
4.4.2 Own architecture (no Doxygen involved).......................24

4.5 Testability .. 24

5 Module interfaces... 25

5.1 Verilog source file - Verilog front-end 25
5.1.1 Verilog source code...25
5.1.2 Comments ...25
5.1.3 Custom directives ..26

5.2 Verilog front-end - Tree printer 26

5.3 Verilog front-end - Data organizer 26

5.4 Data organizer - Output generator 27

6 File formats... 29

6.1 .V - Verilog source file ... 29

6.2 .HTML - HyperText Markup Language...................... 29

7 Code libraries and components 31

7.1 Doxygen .. 31

7.2 The Icarus parser .. 31

8 Design guidelines .. 33

8.1 AST format .. 33

9 Connection to requirements ... 35

9.1 Basic functional requirements 35

9.2 Normal functional requirements 35
8

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
9.3 Extra functional requirements 35

9.4 Basic non-functional requirements 36

10 References .. 37

10.1 Internal documents .. 37

10.2 External documents ... 37
9

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
10

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
1 Introduction

This chapter contains information about the disposition and contents of
this document. It is intended to work as a guide for the reader, as well as for
anyone introducing modifications to this document.

1.1 Purpose of this document

This architecture specification is intended to serve as an overview of the
system that is to be constructed. In this document the architecture of the
system is described, as well as the design decisions that have been made in
order to arrive at this architecture.

This document describes what is needed to implement the requirements in
the requirement specification. A more detailed and careful design will be
made in the design specification, using the architecture described in this
document.

1.2 Document overview

This section describes the contents of each chapter of the document.

1.2.1 Introduction

Describes the disposition and contents of the architecture specification.

1.2.2 System overview

Gives a background of the project and an overview of the system to be
developed.

1.2.3 Design decisions

Presents important design decisions affecting the architecture.

1.2.4 Architectural description

Contains a description of the architecture of the Doxygen and the Verilog
documentation tool.

1.2.5 Module interfaces

Describes the interfaces between the modules in the system.

1.2.6 File formats

Lists and describes the file formats that will be used by the Verilog docu-
mentation tool.

1.2.7 Code libraries and components

This chapter gives a list and an introduction to components that will or
might be used in the product.

1.2.8 Design guidelines

This chapter contains guidelines and recommendations for implementing
the system.
Chapter 1: Introduction 11

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
1.2.9 Connection to requirements

Maps the requirements from the requirements specification to the parts of
the architecture that implement them.

1.2.10 References

Lists all referenced resources. Text within square brackets refer to this sec-
tion.

1.3 Related documents

In this document, many references are made to the requirements specifica-
tion [Hilding 2005]. The following things can be found in that document,
apart from the basic requirements of the system: a brief description of the
project, a use case, product components to be shipped and tests for each
requirement.

1.4 Reading instructions

To get a grasp of what the system is expected to do, read chapter 2 "System
overview" . For an understanding of the proposed architecture, read
chapter 2 to chapter 5. The part on design decisions can be safely skipped.
In order to get a grip on how to implement the system, reading the whole
document is recommended. You are not expected to have read the require-
ments specification, but it is recommended for a full understanding of this
document.

For evaluation of traceability and the connection to the requirements speci-
fication, chapter 9 is recommended reading along with the referenced sec-
tions.

The references made to the Doxygen source code in this document are to
version 1.4.4. See [Doxygen] on how to obtain the source code.

1.5 Document dependencies

Changes in these documents might result in changes in the architecture
specification:

• Requirements specification [Hilding, 2005]

Changes in this architecture specification might result in changes in the fol-
lowing documents:

• Project plan [Jormedal, 2005]
• Design specification [Lissing, 2005]
• Technical documentation [Lissing, 2005]
• Test plan [Åberg, 2005]

1.6 Distribution

This document should be distributed to:

• Hans Olsén and Johan Fagerström, examiners of the architecture speci-
fication.
12 Chapter 1: Introduction

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
• Per Karlström, the customer.
• The project folder.

1.7 Glossary

AST -- Abstract Syntax Tree. A tree describing the structure of a source file.

Parser -- A piece of software that determines the syntactic structure of a
language.

Lexical analyzer -- (lexer or scanner) A piece of software that breaks down
the input into word-like tokens.

Language front-end -- The part of a compiler or similar tool that reads and
parses source code, generating an AST.

Bison -- The GNU parser generator (a variant of YACC). See [Bison].

Flex -- The GNU lexical analyzer generator (a variant of lex). See [Flex].

BNF -- Backus-Naur Form. A way to describe a context-free grammar, use-
ful for describing programming languages.
Chapter 1: Introduction 13

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
14 Chapter 1: Introduction

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
2 System overview

This chapter gives a background of the project and an overview of the sys-
tem to be developed. See the requirements specification [Hilding, 2005] for
further details.

2.1 Background

Verilog [Verilog] is a common hardware design language (HDL) used by
electrical engineers worldwide and specifically by the customer. Structu-
rally, it resembles normal computer programming languages but naturally
it has some special features and data structures, such as modules, wires and
so on.

A documentation tool is a program that automatically creates documenta-
tion from source code files. The documentation gives the reader a good
overview by showing relations between classes and brief descriptions of
them.

While there are several documentation tools for the most popular computer
programming languages, such as C++ and Java, there is no tool capable of
documenting Verilog code.

2.2 Goal of project

This project will probably not have sufficient resources to produce a com-
plete Verilog documentation tool. The goal with this project is therefore to
make a foundation for a documentation tool and to investigate whether
this could be done using existing tools for other languages, e.g. Doxygen
[Doxygen].

All findings, research and/or source code, will be extensively documented
for future projects on the same topic.

2.3 Users and environment

Our product is not meant to be a complete and usable tool, but merely a
foundation for such. The final product, should it ever be developed, is tar-
geted at employees at the department of electrical engineering, Linköping
University, with programming experience. The program will be run at their
computer system, which is mainly UNIX and GNU/Linux.

Use cases detailing the intended uses of the system can be found in the
requirements specification.

2.4 Properties of the system

The focus of the developed system is on extendability and documentation
of the implementation. Completeness, usability, user interface and perfor-
mance are not considered very important.
Chapter 2: System overview 15

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
16 Chapter 2: System overview

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
3 Design decisions

In this chapter, important design decisions that have been made during the
work on the architecture are presented.

3.1 Platform

Early on in the negotiations with the customer, Doxygen was introduced as
the preferred platform to build the Verilog documentation tool upon. Some
time has been invested in investigating Doxygen’s suitability as a base for
this project, resulting in the decision to make this product an extension to
said program. This decision represents a great risk, as we are very depen-
dent on Doxygen’s flexibility and extendability, but is in line with the
customer’s intentions and goal of the project.

Doxygen runs on all major platforms (of which UNIX and Windows are of
interest in this project) due to the use of portable code and Qt as a portabil-
ity layer. The code written in the scope of this project should use the same
mechanisms in order to be portable. Development will be made on UNIX
and tests will be run on GNU/Linux during development, thus satisfying
requirement F-4 (see section 9.1 "Basic functional requirements").

See [Doxygen] for further details.

3.2 Languages and tools

The decision to use Doxygen as a base for the product implies using C++ as
a programming language. This is also the wish of the customer and is given
as a requirement in the requirements specification. Flex (the GNU lexical
analyser generator) and possibly Bison (the GNU parser generator) will be
used to generate C/C++ code for the Verilog parser.

See [Flex] and [Bison] for more information.
Chapter 3: Design decisions 17

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
18 Chapter 3: Design decisions

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
4 Architectural description

The system will be realised as an extension to and modification of Doxy-
gen. This means that many design and architectural decisions already have
been made for us.

This chapter describes Doxygen’s architecture and the changes that will be
made to it. An overview of this architecture is presented in figure 1.

Figur 1: An overview of the proposed architecture. Doxygen is modified and
extended to be able to parse and generate documentation from Verilog files.
The main modules in the system are the Verilog front-end (containing a
scanner/lexical analyzer and a parser), the data organizer and the output
generator.

4.1 Doxygen’s architecture

Doxygen is roughly composed of a language front-end, a data organizer
and a number of output generators. The parts have the following roles:

• Language front-end: This module is used to parse source code files in a
multitude of languages such as C, C++, Java and IDL. It is implemen-
ted as a monolithic lexical analyzer and parser in Flex. An abstract syn-
tax tree (AST) is generated from each source file.

• Data organizer: This is a loosely coupled set of functions used to
extract hierarchies from the AST. Lists of files, functions, classes,
namespaces etc are extracted in this module.

• Output generators: This is a number of classes used to generate output
in formats such as HTML, LaTeX, man files and so on.

• The program flow is driven by Doxygen’s main function performing a
few basic steps: reading the configuration, parsing of input files and
generation of output files. Output generation is mainly driven by the
nodes in the AST.

Verilog
source
file

Verilog data
organizer

output
generator HTML

scanner parser

Doxygen

frontend

language
frontend

Tree
printer
Chapter 4: Architectural description 19

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
4.2 Our architecture, an extension to Doxygen

For each module, these changes and extensions are covered by this project.
See section 5 "Module interfaces" for definitions of the module interfaces.
The syntax tree datatype is described in section 4.3 "The AST datatype" .

4.2.1 Verilog front-end

Input: A Verilog file

Output: A syntax tree

This is a new module replacing or working alongside Doxygen’s language
frontend. It implements Doxygen’s abstract ParserInterface class.

The Verilog front-end will be written in C++, Flex (scanner) and Bison (par-
ser). It will output an abstract syntax tree describing the input code (see
section 4.3 "The AST datatype"). Apart from parsing the Verilog code, com-
ments in the source code are extracted and passed to Doxygen’s comment
parser.

For testing and verification purposes the Verilog front-end will be written
as a self-sustaining module, making it easy to write a test framework that
will output the generated AST in a human-readable form.

The Verilog front-end is divided into two sub-modules, a scanner and a
parser.

4.2.1.1 Sub-module scanner

Input: A Verilog file

Output: A string of tokens

This is the scanner, also called lexical analyzer. It will be written using Flex.
Flex reads an inputfile with syntax rules for a specific language, in our case
Verilog, and produces a scanner implemented in C/C++.

The scanner produced by Flex divides the Verilog code into tokens accor-
ding to the Verilog syntax and produces a string of these tokens. The scan-
ner uses an extended set of regular expressions to scan the source code, see
[Flex].

4.2.1.2 Sub-module parser

Input: A string of tokens.

Output: A syntax tree

The parser uses the string of tokens produced by the scanner to generate a
syntax tree.

As with the scanner, the parser is constructed from a file with rules, in this
case grammar rules. The parser will be created with Bison, which produces
a parser implemented in C/C++.

The BNF for the Verilog syntax is included in [Verilog].

4.2.2 Tree printer

Input: A syntax tree

Output: A textual description of the nodelist
20 Chapter 4: Architectural description

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
The sole purpose of this module is to validate the output from the Verilog
front-end module. Its input is the syntax tree generated by the parser sub-
module. The tree printer formats and prints the contents of the syntax tree
to the standard output. See section 4.3.6 "An output example" for a sample
output.

4.2.3 Data organizer

Input: A syntax tree

Output: A number of lists and tables

This is a part of Doxygen. It generates lists and tables of files, classes,
namespaces and so on from the extracted syntax tree. This module will
have to be extended to handle new types of structures, such as instantiation
of modules in Verilog. The following structures (at least) will be extracted
from the syntax tree:

• Source files (already in Doxygen)
• Module declarations (will need an extension to Doxygen)
• In/out signals in modules (will need an extension to Doxygen)
• Processes (will need an extension to Doxygen)

4.2.4 Output generator

Input: A number of lists and tables

Output: Formatted HTML files

The output generator for HTML should work with our extensions, possibly
after minor modifications. The output interface of the output generator is
described in [Doxygen].

4.3 The AST datatype

This chapter describes the abstract syntax tree datatype and its relation to
Verilog source code.

The specification of the syntax tree is in many respects a subset of the AST
used in Doxygen. All the intricacies of Doxygen’s tree format, complex and
extensive as it is, are not fully understood by the system architect at this
moment. Gaining a full understanding of and producing documentation of
how Doxygen’s syntax tree may be used and modified for use in a Verilog
documentation tool is an important and large part of the latter phases of
this project. This means that a full specification of the syntax tree cannot be
offered at this point of time.

The first experimental implementation of the Verilog parser will use the
syntax tree described in this section. In later stages, the full-blown AST
from Doxygen will be used, possibly with extensions and modifications.
See section 8.1 "AST format" .

4.3.1 Usage

The AST (abstract syntax tree) datatype is used to communicate the parsed
Verilog code and embedded comments to the data organizer module.
Chapter 4: Architectural description 21

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
4.3.2 Composition

The bulk of the abstract syntax tree is composed of nodes of class Entry. An
instance ofAST is thus referenced using a pointer to the root Entry node.

Argument lists are represented as lists of class Argument.

Extracted documenting comments are stored in the Entry and Argument
instances that they pertain to.

4.3.3 Class Entry: a tree node

The Entry class, a tree node, contains a definition of a language construct
from the Verilog source code. This can be for example a module, a process
(always block), a component instantiation, a function and so on.

This is the subset of the Entry class defined in entry.h in Doxygen’s source
code that is most important for this project. Implementation details are left
out for brevity. The definition is given in pseudo-C++ code.

class Entry {
public:
list<Entry> sublist; //eg. processes in a module
String fileName; //File where declaration was found
String name; //Name of construct (symbol)
String type; //Type of construct: module, process,...
list<Argument> argList; //Arguments to this entity
String docs; //Documentation block

void addSubEntry(Entry*); //Add an entry to sublist
};

4.3.4 Class Argument: a generalized argument

The Argument class defines an argument to a process, a module or a func-
tion. The documentation pertaining to this specific argument is stored
along with the name and data type of the argument.

This is a subset of the Argument class defined in entry.h in Doxygen’s
source code. The definition is given in pseudo-C++ code.

class Argument {
String type; //Data type of argument, if applicable
String name; //Name of argument
String docs; //Documentation block for argument

};

4.3.5 Mapping to Verilog code, an example

To illustrate how a piece of Verilog code is parsed and mapped to a syntax
tree, an example is given. The following definition of an edge triggered flip-
flop is mapped to the tree of objects shown below. Note how only state-
ments and definitions that are important to the documentation are extrac-
ted.

module latch(clk, d, q);
input clk; ///< Clock
input d;
output q;
22 Chapter 4: Architectural description

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
always@(posedge clk) begin
q <= d;

end
endmodule

Figur 2: Abstract syntax tree extracted from a piece of Verilog code. The diagram
shows a module having three arguments (clk, d, q) that contains one process
(always block) that is given one argument named clk.

4.3.6 An output example

This is an example output from the Tree printer module, using the same
example as in figure 2:

File name: example.v

ENTRY
Name: latch Type: module
Docs: -
ARGUMENTS:

Name: clk Type: input
Docs: Clock

Name: d Type: input
Docs: -

Name: q Type: output
Docs: -

SUBENTRIES:
ENTRY
Name: - Type: process
Docs: -
Chapter 4: Architectural description 23

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
ARGUMENTS:
Name: clk Type: -
Docs: -

4.4 Alternative architectures

4.4.1 Filter to Doxygen

Doxygen support for some languages have been implemented as a filter
executed before Doxygen that translates the source language to (pseudo-)
C++ or Java code. This method was rejected because it was thought to
prove inflexible and a mapping to C++ and Java concepts could be hard to
find.

4.4.2 Own architecture (no Doxygen involved)

The documentation tool does not necessarily have to be an extension to an
existing tool. The question whether to use Doxygen as a base for the Verilog
documentation tool led to lengthy discussions and investigations during
the early weeks of the project. The decision to use Doxygen was made
because of the so much greater potential for getting a useful Verilog docu-
mentation tool even though the risk of running into problems related to
Doxygen cannot be neglected.

4.5 Testability

The Verilog front-end is written as a self-containing module so that module
and regression tests can be performed. The front-end module can also be
compiled and run with the tree printer module in a separate test frame-
work. In addition to this, we expect to be able to use Doxygen’s XML and/
or HTML output for manual inspection of parsing results.
24 Chapter 4: Architectural description

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
5 Module interfaces

This chapter describes the interfaces between the different modules in the
architecture.

5.1 Verilog source file - Verilog front-end

The input interface to the Verilog front-end is the contents of the Verilog
source file. The front-end will look for three types of information in this
plain text file: Verilog source code, marked-up comment blocks and custom
comment directives. See the following subsections.

The exact format of the scanner’s syntax rules and the parser’s grammar
rules are not specified at this time, but will be defined in the design specifi-
cation.

5.1.1 Verilog source code

The commands of the Verilog source code are specified by the IEEE stan-
dards 1364 and P1800 [IEEE].

One of the key concepts in Verilog language is the module, which reads its
input parameters from its signal inputs, performs some kind of function
and then writes the result to its signal outputs. The module’s function may
be implemented using logic primitives, bit operations, other modules, and
so on.

5.1.2 Comments

Verilog files are commented using either the short comment (//) or the
long comment (/* and */) format. Both have the same functionality as their
C++ equivalents. Normally, Doxygen ignores these comment blocks.
However, Doxygen supports several kinds of comment styles to connect a
piece of comment text with a language structure. For example, the "Javadoc
style":

/**
* This comment starts with an extra asterisk. It will
* be connected to the following language construct.
*/
class Ex1 {}

Another supported comment style is the "Qt-style":

/*!
* This is the Qt-style, beginning with an exclamation
* mark. It works like the previous example.
*/
class Ex2 {}

As for requirement F-7 in the requirements specification, our tool will be
capable of extracting Qt-style style comments from the Verilog code.

The comments may contain anything without interfering with the source
code. Therefore, we can use the comment blocks to introduce special direc-
tives. See the following section.
Chapter 5: Module interfaces 25

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
5.1.3 Custom directives

Doxygen also supports special tags or directives in the comment blocks.
These directives are used to indicate what kind of information the com-
ment block contains and will affect the output from Doxygen’s output
generator. In the following example, the directives state that the author of
the code is John Doe and that the code was created on January 1, 2005:

/*!
* This is an example with custom directives.
*
* \author John Doe
* \date 2005-01-01
*/
class Ex3 {}

The Verilog source code file may contain Verilog-specific directives in the
code comments. These directives should be handled by the Verilog front-
end to fulfill requirement F-8 in the requirements specification [Hilding,
2005]:

• \author {author_name}
The author of the source code.

• \date {date}
The date when the source code was last updated.

• \bug {bug_list}
Known bugs in the source code.

• \clock {signal_name}
Specifies which signal is used as clock signal.

• \reset {signal_name}
Specifies which signal is used as reset signal.

• \comb
Indicates that the following code block is purely combinatorial.

• \state {state_alias}
An alias for a state in a state machine.

• \class {class_name signal_list}
Denotes that all signals in the signal list belong to the same class.

Doxygen already supports the first three directives, while the rest have to
be implemented.

5.2 Verilog front-end - Tree printer

This module will be implemented as a C++ class with a single public met-
hod taking an AST as an argument. It will output a textual representation
of the AST (see section 4.3.6 "An output example") on standard output.

5.3 Verilog front-end - Data organizer

The Verilog front-end will construct an AST of the processed Verilog source
code. This AST will constitute the front-end’s output interface and it has
two, possibly different, specifications.
26 Chapter 5: Module interfaces

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
As stated in requirement F-2 in the requirements specification [Hilding,
2005], a basic requirement is to implement an arbitrary data type for the
AST.

If possible, the AST will be represented in a way that it can be understood
by Doxygen’s data organizer. This is stated in requirement F-5 in the requi-
rements specification [Hilding, 2005]. See section 4.3 "The AST datatype"
for more information.

The Verilog front-end will be a C++ class inheriting from the abstract parser
class in Doxygen (class ParserInterface). The front-end will need to imple-
ment the parseInput() method, taking a buffer with source code as argu-
ment, and returning an AST.

To make Doxygen’s data organizer compatible with Verilog, some modifi-
cations to the data organizer will probably be necessary. For instance, the
introduction of Verilog constructs, such as "module" and "wire", or the
custom directives listed in section 5.1.3 "Custom directives" .

5.4 Data organizer - Output generator

The data organizer is not a module per se, but more like a losely connected
set of Doxygen functions. When the input files are parsed, the AST is found
in a global variable. Information is extracted from this AST in a number of
steps and put in a collection of global lists.

The output generation step takes the data generated by the data organizer
(a number of global lists) and iterates through it calling the output genera-
tor classes for each entry to be output. The interface to the output genera-
tion classes are extensive, but we expect no need to modify them.
Chapter 5: Module interfaces 27

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
28 Chapter 5: Module interfaces

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
6 File formats

This chapter lists the file formats used in the project. The file extension is
given in the heading and then a description of that file format follows.

6.1 .V - Verilog source file

Verilog source files are plain text files whose source code syntax follow the
IEEE standards 1364 and P1800 [IEEE].

For more information, and an extensive BNF notation, see [Verilog].

6.2 .HTML - HyperText Markup Language

HTML is a popular and versatile file format for presenting practically any
kind of information. The files consist of text blocks surrounded by tags that
describe how to format the text. For more information on HTML, see
[W3C].
Chapter 6: File formats 29

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
30 Chapter 6: File formats

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
7 Code libraries and components

7.1 Doxygen

The source code documentation tool Doxygen will be the main component
of the product. It is written in C++ and Flex and is heavily used for docu-
mentation of C++ code as well as a number of other languages. The official
homepage can be found at [Doxygen].

7.2 The Icarus parser

Icarus is a free software Verilog simulation and synthesis tool. We hope to
be able to use the parser from Icarus as a part of our project or as a refe-
rence. The official homepage can be found at [Icarus].
Chapter 7: Code libraries and components 31

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
32 Chapter 7: Code libraries and components

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
8 Design guidelines

This chapter contains guidelines for the design and particularly the design
specification [Lissing, 2005].

8.1 AST format

The first step towards implementing a working parser will be using the
simplified AST described in section 4.3 "The AST datatype" , thus satisfying
requirement F-2 (see section 9.1 "Basic functional requirements"). When
this parser has been shown to work, it will be integrated into Doxygen
along with the necessary changes to Doxygen, satisfying requirement F-5
(see section 9.2 "Normal functional requirements").
Chapter 8: Design guidelines 33

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
34 Chapter 8: Design guidelines

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
9 Connection to requirements

In this section, each requirement from the requirements specification [Hil-
ding, 2005, revision 1.1] is listed along with a reference to the part of the
architecture to which it can be traced.

Some requirements can’t be connected to a single part of the architecture.
For these requirements a short description of how they affect the architec-
ture is given.

9.1 Basic functional requirements

9.2 Normal functional requirements

9.3 Extra functional requirements

Requirement Point of implementation

F-1 Parser for verilog code section 4.2.1 "Verilog front-end"

F-2 Create a syntax tree section 4.2.1 "Verilog front-end" and
section 4.3 "The AST datatype"

F-3 Print syntax tree section 4.2.2 "Tree printer"

F-4 Linux compatible section 3.1 "Platform"

Requirement Point of implementation

F-5 Doxygen compatible entry tree section 4.3 "The AST datatype"

F-6 Extract hierarchy section 4.2.3 "Data organizer"

F-7 Extract comments section 5.1.2 "Comments"

Requirement Point of implementation

F-8 Custom directives section 5.1 "Verilog source code - Verilog
parser"

F-9 Generate HTML section 4.2.4 "Output generator"

F-10 Windows compatible section 3.1 "Platform"

F-11 Other outputs section 4.2.4 "Output generator"
Chapter 9: Connection to requirements 35

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
9.4 Basic non-functional requirements

A number of these requirements can’t be connected to a specific part of the
architecture and some of them are not applicable to the architecture at all:

N-2: This requirement only affects the actual implementation.

N-3: Upgradeability has been kept in mind during the architecture work,
but can’t be attributed to one single part of the architecture.

N-4: This is not applicable to the architecture. All documents are written in
english, and all documentation will be.

N-5: This requirement states that documents are to be written in
FrameMaker format and is as such not applicable to the architecture.

N-6: All code should be put in a Subversion repository. Not applicable to
the architecture.

Requirement Point of implementation

N-1 Programming language section 3.2 "Languages and tools"

N-2 Documented with doxygen -

N-3 Upgradeable -

N-4 English usage -

N-5 Documentation format -

N-6 Revision control -
36 Chapter 9: Connection to requirements

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
10 References

10.1 Internal documents
• [Jormedal, 2005] Jormedal, Martin, "Project plan" (2005)
• [Hilding, 2005] Hilding, Daniel, "Requirements specification" (2005)
• [Lissing, 2005] Norling, Jonas, "Design specification" (2005)
• [Lissing, 2005] Lissing, Johan, "Technical documentation" (2005)
• [Åberg, 2005] Åberg, Eric, "Test plan" (2005)

10.2 External documents
• [Bison] Free Software Foundation,

WWW: http://www.gnu.org/software/bison/
• [Flex] Free Software Foundation,

WWW: http://www.gnu.org/software/flex/
• [Verilog] McNamara, Michael, WWW: http://www.verilog.com/
• [Doxygen] van Heesch, Dimitri, WWW: http://www.doxygen.org/
• [IEEE] IEEE Standards Association,

WWW: http://standards.ieee.org/
• [W3C] World Wide Web Consortium,

WWW: http://www.w3.org/MarkUp/
• [Icarus] Williams, Stephen,

WWW: http://www.icarus.com/eda/verilog/
Chapter 10: References 37

Linköpings tekniska högskola
Institutionen för datavetenskap (IDA)
PUM 12 2005

Architecture specification
Jonas Norling

2005-10-11 / v 1.0
38 Chapter 10: References

