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Abstract

Thi s docunent specifies how to represent Montgonery curves and

(tw sted) Edwards curves as curves in short-Wierstrass form and
illustrates how this can be used to carry out elliptic curve

conmput ations | everagi ng existing inplenentations and specifications
of, e.g., ECDSA and ECDH using NI ST prinme curves. W also provide
ext ensi ve background material that may be useful for inplenenters of
elliptic curve cryptography.

Requi renent s Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMVENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14 [ RFC2119] [RFC8174] when, and only when, they appear in al
capitals, as shown here.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I1ETF). Note that other groups nay al so distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on July 25, 2022.
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1. Fostering Code Reuse with New Elliptic Curves

Elliptic curves can be represented using different curve nodels.
Recently, |IETF standardized elliptic curves that are clainmed to have
better performance and inproved robustness agai nst "real world"
attacks than curves represented in the traditional short-Wierstrass
curve nodel. These so-called CFRG curves [RFC7748] use the

Mont gonmery curve nodel and the nodel of tw sted Edwards curves.

In this docunent, we specify these curves using the traditional
short-Wierstrass nodel and al so define howto efficiently switch
bet ween representations in these different curve nodels. In
particul ar, we specify Wi 25519, which allows an alternative
representati on of points of Curve25519 (a Montgonery curve) and of
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poi nts of Edwards25519 (a twi sted Edwards curve), as points of a
correspondi ng short-Wierstrass curve. Simlarly, we specify Wi 448,
which allows an alternative representation of points of Curve448 (a
Mont gonery curve) and of points of Ed448 (an Edwards curve), as

poi nts of a correspondi ng short-Wierstrass curve.

Use of Wei 25519 and Wi 448 al |l ows easy definition of new

instanti ations of signature schenmes and key agreenent schenes already
specified for traditional N ST prine curves, thereby allow ng easy
integration with existing specifications, such as NI ST SP 800-56a

[ SP-800-56a], FIPS Pub 186-4 [FIPS-186-4], and ANSI X9.62-2005

[ ANSI - X9. 62], and fostering code reuse on platforns that already

i npl enent sone of these schemes using elliptic curve arithnetic for
curves in short-Wierstrass form (see Appendix C.1). To illustrate
this, we specify how to use Wi 25519 and Wi 448 with co-factor ECDH
and with ECDSA, thereby giving rise to the key agreenent schenes
ECDH25519 and ECDH448 and t he signature schenmes ECDSA25519 and
ECDSA448. I n all these cases, inplenentors nmay use the curve
arithnmetic for the curve nodel of their choosing (where they can
efficiently switch between representations in different curve nodels,
if required).

For ease of exposition, we consider Wi 25519 first and introduce
Wei 448 sinply as an illustration of howto create other "offspring”
obj ects and protocols (see Section 4.4). W also provide extensive
background material that we hope may be useful for inplenentors of
elliptic curve cryptography or for cross-referencing with future
speci fication work.

2. Specification of Wi 25519

For the specification of Wi 25519 and its relationship to Curve25519
and Edwar ds25519, see Appendix E. For further details and background
information on elliptic curves, we refer to the other appendices.

The use of Wei 25519 allows reuse of existing generic code that

i mpl ements short-Wierstrass curves, such as the NI ST curve P-256, to
al so i npl ement the CFRG curves Curve25519 and Edwar ds25519. (Here,
generic code refers to an inplenmentation that does not depend on

har dcoded domai n paraneters (see also Section 6).) W also cater to
reusi ng of existing code where sone domai n paraneters nmay have been
har dcoded, thereby w dening the scope of applicability. To this end,
we specify the short-Wierstrass curves Wi 25519. 2 and Wei 25519. - 3,
wi th hardcoded donain paraneter a=2 and a=-3 (nod p), respectively;
see Appendix G (Here, pis the characteristic of the field over

whi ch these curves are defined.)
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3.

4.

Use of Representation Swtches

The curves Curve25519, Edwards25519, and Wei 25519, as specified in
Appendi x E. 3, are all isonorphic, with the transformtions of
Appendi x E. 2. These transformations map the specified base point of
each of these curves to the specified base point of each of the other
curves. Consequently, a public-private key pair (k,R =k*GQ for any
one of these curves corresponds, via these isonorphic mappings, to
the public-private key pair (k, R:=k*G ) for each of these other
curves (where G and G are the correspondi ng base points of these
curves). This observation extends to the case where one al so

consi ders curve Wi 25519.2 (which has hardcoded domai n par anet er
a=2), as specified in Appendix G 3, since it is isonorphic to

Wei 25519, with the transformati on of Appendix G 2, and, thereby, also
i sonorphic to Curve25519 and Edwar ds25519.

The curve Wi 25519. -3 (which has hardcoded domai n paraneter a=-3 (nod
p)) is not isonorphic to the curve Wi 25519, but is related in a
slightly weaker sense: the curve Wi 25519 is isogenous to the curve
Wei 25519. -3, where the mapping of Appendix G 2 is an isogeny of
degree | =47 that maps the specified base point G of Wi 25519 to the
speci fied base point G of Wi 25519.-3 and where the so-called dua

i sogeny (which maps Wei 25519. -3 to Wei 25519) has the sane degree

| =47, but does not map G to G but to a fixed nultiple hereof, where
this multiple is | =47. Consequently, a public-private key pair
(k, R =k*Q for Wi 25519 corresponds to the public-private key pair

(k, R:=k*G) for Wi25519.-3 (via the |-isogeny), whereas the
public-private key pair (k, R:=k*G ) corresponds to the public-
private key pair (I*k, I*R=l*k*G of Wi 25519 (via the dual isogeny).
(Note the extra scalar | =47 here.)

Al ternative curve representations can, therefore, be used in any
cryptographi ¢ schene that involves conputations on public-private key
pairs, where inplenentations may carry out conputations on the
correspondi ng object for the isonorphic or isogenous curve and
convert the results back to the original curve (where, in case this

i nvolves an | -isogeny, one has to take into account the factor 1).
This includes use with elliptic-curve based signature schenes and key
agreenent and key transport schenes.

For sone exanpl es of curve conputations on each of the curves
specified in Appendi x E.3 and Appendi x G 3, see Appendi x J.

Exanpl es
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4.1. Inplementation of X25519, Specification of ECDH25519

RFC 7748 [ RFC7748] specifies the use of X25519, a co-factor Diffie-
Hel | man key agreenment schene, with instantiation by the Montgonery
curve Curve25519. This key agreenent schene was already specified in
Section 6.1.2.2 of NIST SP 800-56a [ SP-800-56a] for elliptic curves
in short-Wierstrass form Hence, one can inplenment X25519 using

exi sting NI ST routines by (1) representing a point of the Mntgonery
curve Curve25519 as a point of the Wierstrass curve Wi 25519; (2)
instantiating the co-factor Diffie-Hell man key agreenment schene of
the NI ST specification with the resulting point and Wi 25519 donmai n
paraneters; (3) representing the key resulting fromthis schene
(which is a point of the curve Wi 25519 in Wierstrass forn) as a
poi nt of the Montgonmery curve Curve25519. The representati on change
can be inplenented via a sinple wapper and involves a single nodul ar
addition (see Appendix E.2). Using this nethod has the additional
advant age that one can reuse the public-private key pair routines,
domai n paraneter validation, and other checks that are already part
of the NI ST specifications.

A NI ST-conpliant version of the co-factor Diffie-Hell man key
agreenent schene (denoted by ECDH25519) results if one keeps inputs
(key contributions) and pre-output (shared key K) in the short-

Wi erstrass format (and, hence, does not perform Steps (1) and (3)
above), where the actual output (shared secret Z) is the x-coordinate
of K (if this is an affine point of the curve), represented as a
fixed-size octet string in tight MSB/ nsb-order using the FE20S
mappi ng of Appendix |.5, and where the output is an error indicator
otherwise (i.e., if Kis the point at infinity O of the curve).

NOTE 1: A Montgonery version of the co-factor D ffie-Hell man key
agreenent schene (denoted by X25519+) results by incorporating Steps
(1), (2), and (3) above, i.e., where one keeps inputs (key
contributions) and pre-output (shared key K) in the Montgonery curve
format, as points of Curve25519, where one represents each affine
point by only its x-coordinate, represented as a fixed-size octet
string in tight LSB/ nmsb-order using the FE20S mapping and its
reverse, the strict OS2FE mappi ng, of Appendix |.5, and where the
actual output (shared secret Z) is the representation of the shared
key K as defined above (if this is an affine point of the curve), and
where the output is an error indicator otherwise (i.e., if Kis the
point at infinity O of the curve). The schenme X25519, as specified
in [RFC7748], is a nore lenient version of this X25519+ schene,

wher eby one does not mandate rejection of shared keys in the smal
subgroup (which are instead represented as if these were the point
(0,0) of order two), where one does not check whether a received key
contribution is a point of Curve25519 rather than a point of a
quadratic tw st of this curve (for definitions of these terns, see
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Appendi x B.1), and where one uses the non-strict (rather than strict)
OS2FE mapping (which, in this case, is always applied after setting
the leftnost bit of the rightnost octet to zero). Moreover, wth
X25519, private keys are generated in the interval [27251, 272252-1]
rather than in the interval [1,n-1] (the so-called "clanping") and
one uses as base point G:=h*G where G n, and h are, respectively,
the fixed base point, the order of the base point, and the co-factor
of the curve in question.

NOTE 2: At this point, it is unclear whether a FIPS-accredited nodul e
i npl ementing the co-factor Diffie-Hell man schene with, e.g., P-256
woul d al so extend this accreditation to the Montgonery versions
X25519+ or X25519. (For cryptographic nodul e validation program

gui dance, see, e.g., [FIPS-140-2].)

4.2. Inplenmentation of Ed25519

RFC 8032 [ RFC8032] specifies Ed25519, a "full" Schnorr signature
schene, with instantiation by the tw sted Edwards curve Edwards25519.
One can inplenent the conputation of the epheneral key pair for
Ed25519 usi ng an existing Montgomery curve inplenentation by (1)
generating a random public-private key pair (k, R:=k*G) for
Curve25519; (2) representing this public-private key as the pair (k,
R =k*@ for Ed25519. As before, the representati on change can be

i npl enented via a sinple wapper. Note that the Mntgonery | adder
specified in Section 5 of RFC7748 [ RFC7748] does not provide
sufficient information to reconstruct R :=(u, v) (since it does not
conmpute the v-coordinate of R). However, this deficiency can be
remedi ed by using a slightly nodified version of the Montgonery

| adder that includes reconstruction of the v-coordinate of R :=k*G
at the end of the Montgonery | adder (which uses the v-coordi nate of
t he base point G of Curve25519 as well). For details, see
Appendi x C. 2.

4.3. Specification of ECDSA25519

FI PS Pub 186-4 [FIPS-186-4] specifies the signature schenme ECDSA and
can be instantiated not just with the NIST prinme curves, but also
with other Weierstrass curves (that satisfy additional cryptographic
criteria). In particular, one can instantiate this schene with the
Wei erstrass curve Wi 25519 and the hash function SHA-256

[ FI PS-180-4], where an inplenentation may generate an epheneral
public-private key pair for Wi 25519 by (1) internally carrying out

t hese conputations on the Mntgonery curve Curve25519, the tw sted
Edwar ds curve Edwards25519, or even the Wierstrass curve Wi 25519. -3
(wi th hardcoded a=-3 domain paranmeter); (2) representing the result
as a key pair for the curve Wi 25519. Note that, in either case, one
can i npl ement these schenmes with the sane representati on conventions
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as used with existing N ST specifications, including bit/byte-
ordering, conpression functions, and the like. This allows generic

i mpl enent ati ons of ECDSA with the hash function SHA-256 and with the
NI ST curve P-256 or with the curve Wi 25519 specified in this
specification to reuse the sane inplenentation (instantiated wth,
respectively, the NIST P-256 elliptic curve domain paraneters or with
t he domai n paraneters of curve Wei 25519 specified in Appendix E). W
denote by ECDSA25519 the instantiation of ECDSA with SHA-256 and with
curve Wei 25519, where the signature (r,s) is represented as the

ri ght-concatenation of the integers r and s in the interval [1,n-1],
where n is the order of the base point of the curve in question, each
represented as fixed-size octet strings in tight NMSB/ nsb-order using
t he ZnE2OS mappi ng of Appendi x |.6.

4.4. O her Uses (Wi 448, ECDH448, ECDSA448, and Ot hers)

Any existing specification of cryptographic schenes using elliptic
curves in Weierstrass formand that allows introduction of a new
elliptic curve (here: Wi 25519) is anenable to simlar constructs,

t hus spawni ng "of fspring" protocols, sinply by instantiating these
using the new curve in short-Wierstrass form thereby all ow ng code
and/ or specifications reuse and, for inplenentations that so desire,
carrying out curve conputations "under the hood" on Montgonery curve
and tw sted Edwards curve cousins hereof (where these exist). This
woul d sinply require definition of a new object identifier for any
such envi sioned "offspring" protocol. This could significantly
sinplify standardi zati on of schenes and hel p keeping at bay the
resource and nmi ntenance cost of inplenentations supporting al gorithm
agility [ RFC7696].

We illustrate the construction of such offspring protocols for
Curve448, another Montgonmery curve recently standardi zed by | ETF (see
[RFC7748]). Simlar to the case with Curve25519, one can represent
points of this curve via different curve nodels, viz. as points of an
Edwar ds curve (Ed448) or as points of a short-Wierstrass curve

(Wi 448). For the specification of Wi 448 and its relationship to
Curve448 and Ed448, see Appendix M As with ECDH25519, one can now
easily define a NI ST-conpliant version of co-factor Diffie-Hell mn
key agreenent (denoted by ECDH448), by sinply reusing the exanpl e of
Section 4.1, but now using the short-Wierstrass curve Wi 448, rather
t han Wi 25519 (with the sane representation and bit/byte-ordering
conventions). Simlarly, one can easily specify ECDSA with Wi 448
and a suitable hash function, by sinply reusing the exanple of
Section 4.3, but now using the short-Wierstrass curve Wi 448, rather
t han Wi 25519, and pi cki ng as hash functi on SHAKE256 (see Section 6.3
of [FIPS-202]) with output size of d0=512 bits. W denote by
ECDSA448 the resulting signature schene (wWwth the sane representation
and bit/byte-ordering conventions).
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NOTE: A Montgonery version of the co-factor D ffie-Hell man key
agreenent schene (denoted by X448+) results by reusing the
description of X25519+ in Section 4.1, but now using the Montgonery
curve Curve448, rather than Curve25519 (with the same checks and
representation and bit/byte-ordering conventions). The schene X448,
as specified in [RFC7748], is a nore lenient version of this X448+
schene, whereby one does not mandate rejection of shared keys in the
smal | subgroup (which are instead represented as if these were the
point (0,0) of order two), nor checks whether a received key
contribution is a point of Curved448 rather than a point of a
gquadratic twi st of this curve, and where one uses the non-strict
(rather than the strict) OS2FE mapping for converting octet strings
to field elenments. Moreover, with X448, private keys are generated
in the interval [27445,2"446-1] rather than in the interval [1,n-1]
(the so-called "clanping") and one uses as base point G:=h*G where
G n, and h are, respectively, the fixed base point, the order of the
base point, and the co-factor of the curve in question.

5. Caveat s

The exanpl es above illustrate how specifying the Wierstrass curve
Wei 25519 (or any curve in short-Wierstrass format, for that matter)
may facilitate reuse of existing code and may sinplify standards
devel opnent. However, the follow ng caveats apply:

5.1. Wre Format

The transfornmati ons between alternative curve representati ons can be
i npl emented at negligible relative increnental cost if the curve
points are represented as affine points. |If a point is represented
in conpressed format, conversion usually requires a costly point
deconpression step. This is the case in [ RFC7748], where the inputs
to the co-factor Diffie-Hell man scheme X25519, as well as its output,
are represented in u-coordinate-only format. This is also the case
in [ RFC8032], where the EdDSA signature includes the epheneral
signing key represented in conpressed format (see Appendix H for
details). Note that in the latter case conpression is |ossless,
whereas it is lossy in the forner case.

5.2. Representation Conventions

While elliptic curve conputations are carried-out in a field G-(q)
and, thereby, involve large integer arithnetic, these integers are
represented as bit- and byte-strings. Here, [RFC8032] uses |east-
significant-byte (LSB)/least-significant-bit (lsb) conventions,
whereas [ RFC7748] uses LSB/ nost-significant-bit (nmsb) conventions,
and where nost other cryptographic specifications, including N ST
SP800- 56a [ SP-800-56a], FIPS Pub 186-4 [FIPS-186-4], and ANSI
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X9. 62- 2005 [ ANSI - X9. 62] use nost-significant-byte (MSB)/ nsb
conventions. Since each pair of conventions is different (see
Appendi x | for details and Appendix J for exanples), this does
necessitate bit/byte representati on conversions.

5. 3. Dormai n Par amet er s

Al'l traditional N ST curves are Weierstrass curves wth domain
paranmeter a=-3, while all Brainpool curves [RFC5639] are isonorphic
to a Weierstrass curve of this form Thus, one can expect there to
be existing Weierstrass inplenentations with a hardcoded a=-3 domai n
paranmeter ("Jacobian-friendly"). For those inplenentations,

i ncludi ng the curve Wi 25519 as a potential vehicle for offering
support for the CFRG curves Curve25519 and Edwar ds25519 is not
possible, since it is not of the required form Instead, one has to
i mpl enment Wi 25519. -3 and i ncl ude code that inplenents the isogeny
and dual isogeny fromand to Wi 25519. The | owest odd-degree isogeny
has degree | =47 and requires roughly 9kB of storage for isogeny and
dual -i sogeny conputations (see the tables in Appendix G 4). Note

t hat storage woul d have reduced to a single 64-byte table if only the
Curve25519 curve woul d have been generated so as to be isonorphic to
a Weierstrass curve with hardcoded a=-3 paraneter (this corresponds
to 1 =1).

NOTE 1: An exanple of a Montgomery curve defined over the sanme field
as Curve25519 that is isonorphic to a Wierstrass curve with

har dcoded a=-3 paraneter is the Montgonery curve M{A B} with B=1 and
A=-1410290 (or, if one wants the base point to still have
u-coordinate u=9, with B=1 and A=-3960846). In either case, the
resulting curve has the sanme cryptographic properties as Curve25519
and the same performance (which relies on A being a 3-byte integer,
as is the case with the domai n paraneter A=486662 of Curve25519, and
usi ng the sanme special prinme p=272255-19), while at the same tine
bei ng "Jacobi an-friendly" by design.

NOTE 2: Wiile an inplenentation of Curve25519 via an isogenous

Wei erstrass curve with domain parameter a=-3 requires a relatively

| arge table (of size roughly 9kB), for a quadratic tw st of
Curve25519 (e.g., the Montgonery curve M{A B} with A=486662 and

B =2) this inplenmentation approach only requires a table of size |ess
than 0.5kB (over 20x smaller), solely due to the fact that it is

| -isogenous to a Weierstrass curve with a=-3 paraneter with
relatively small paraneter |=2 (conpared to | =47, as is the case with
Curve25519 itself).
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6.

| mpl enent ati on Consi der ati ons

The efficiency of elliptic curve arithmetic is primarily determ ned
by the efficiency of its group operations (see Appendix C). Numerous
optim zed fornul ae exist, such as the use of so-called Mntgonery

| adders wth Montgonmery curves [ Mont-Ladder] or with Wi erstrass
curves [Wei-Ladder], the use of hardcoded a=-3 donmai n paraneter for
Wei erstrass curves [ ECC-Isogeny], and the use of hardcoded a=-1
domai n paraneters for tw sted Edwards curves [tEd-Fornulas]. These
all target reduction of the nunber of finite field operations
(primarily, finite field nmultiplications and squarings). O her
optim zations target nore efficient nodul ar reductions underlying
these finite field operations, by specifying curves defined over a
field G/(q), where the field size q has a special formor a specific
bit-length (typically, close to a multiple of a machi ne word).
Dependi ng on the inplenentation strategy, the bit-length of q may
also facilitate reduced so-called "carry-effects” of integer
arithnetic.

Most curves use a conbi nation of these design philosophies. Al N ST
curves [FIPS-186-4] and Brai npool curves [RFC5639] are Wi erstrass
curves with a=-3 domain paranmeter, thus facilitating nore efficient
el liptic curve group operations than with a<>-3 (via so-called
Jacobi an coordinates). The N ST curves and the Montgonery curve
Curve25519 are defined over prinme fields, where the prine nunber has
a special form whereas the Brainpool curves - by design - use a
generic prime nunber. None of the NI ST prinme curves, nor the

Brai npool curves, can be expressed as Montgonery or tw sted Edwards
curves, whereas - conversely - Mntgonery curves and tw sted curves
can be expressed as Wi erstrass curves.

Wil e use of Wei 25519 all ows reuse of existing generic code that

i npl enents short-Wierstrass curves, such as the NI ST curve P-256, to
al so i npl enent the CFRG curves Curve25519 or Edwar ds25519, this

obvi ously does not result in an inplenentation of these CFRG curves
that exploits the specific structure of the underlying field or other
speci fic domain paranmeters (since generic). Reuse of generic code,
therefore, may result in a |l ess conputationally efficient curve

i npl enentation than woul d have been possible if the inplenentation
had specifically targeted Curve25519 or Edwards25519 alone (with the
overall cost differential estimted to be sonmewhere in the interval
[1.00-1.25]). |If existing generic code offers hardware support,
however, the overall speed may still be larger, since |less efficient
formul ae for curve arithnetic using Wi 25519 curves conpared to a

di rect inplenentation of Curve25519 or Edwards25519 arithnetic may be
nore than conpensated for by faster inplenmentations of the finite
field arithnmetic itself.

Struik Expires July 25, 2022 [ Page 13]



I nternet-Draft | wi g-curve-representations Jan 2022

Overall, one should consider not just code reuse and conputati onal
efficiency, but also devel opnment and mai nt enance cost, and, e.g, the
cost of providing effective inplenentation attack counternmeasures
(see al so Section 8).

7. Inplenmentation Status

[Note to the RFC Editor] Please renove this entire section before
publication, as well as the reference to [ RFC7942].

This section records the status of known inplenentations of the
protocol defined by this specification at the tinme of posting of this
Internet-Draft, and is based on a proposal described in [ RFC7942].
The description of inplenentations in this section is intended to
assist the IETF in its decision processes in progressing drafts to
RFCs. Please note that the listing of any individual inplenentation
here does not inply endorsenent by the IETF. Furthernore, no effort
has been spent to verify the information presented here that was
supplied by I ETF contributors. This is not intended as, and nust not
be construed to be, a catalog of available inplenentations or their
features. Readers are advised to note that other inplenentations may
exi st.

According to [ RFC7942], "this will allow reviewers and worki ng groups
to assign due consideration to docunents that have the benefit of
runni ng code, which may serve as evidence of val uabl e experinentation
and feedback that have nade the inpl enmented protocols nore mature.

It is up to the individual working groups to use this infornmation as
they see fit.

Ni kol as Rosener eval uated the performance of sw tching between
different curve nodels in his Master’s thesis [Rosener]. For an

i mpl enent ati on of Wi 25519, see <https://github.com ncrme/ c25519>.
For support of this curve in tinydtls, see <https://github.conf ncre/
tinydtls>.

ANSSI (the national cybersecurity agency of France) inplenented the
Ed25519 signature schene using a generic ECC library for short-

Wei erstrass curves instantiated with the Wi 25519 donmai n paraneters,
where this was notivated by the desire to both keep the library core
mat hemati cal foundati ons sinple and keep the defense-in-depth
(regarding software security and si de-channels) focused on a rather
l[imted part. For further details, see
<https://githubnmenory. com i ndex. php/ repo/ ANSSI - FR/ | i becc>.

According to <https://comrmunity. nxp.com docs/ DOC-330199>, an
i npl enmentati on of Wi 25519 on the Kinets LTC ECC HW pl atform i nproves
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t he performance by over a factor ten conpared to a stand-al one
i npl enentati on of Curve25519 wi t hout hardware support.

The signature schenme ECDSA25519 (see Section 4.3) is supported in
[ RFC8928] .

8. Security Considerations

The different representations of elliptic curve points discussed in
this docunent are all obtained using a publicly known transformation,
which is either an isonorphismor a | owdegree isogeny. It is well-
known that an isonorphismmaps elliptic curve points to equival ent

mat hemat i cal objects and that the conplexity of cryptographic

probl enms (such as the discrete |ogarithm problem) of curves rel ated
via a | owdegree isogeny are tightly related. Thus, the use of these
t echni ques does not negatively inpact cryptographic security of

el liptic curve operations.

As to inplenmentation security, reusing existing high-quality code or
generic inplenentations that have been carefully designed to

wi t hstand i npl enentation attacks for one curve nodel may allow a nore
econoni cal way of devel opnent and nai nt enance than providing this
sane functionality for each curve nodel separately (if multiple curve
nodel s need to be supported) and, otherw se, may all ow a nore gradual
mgration path, where one may initially use existing and accredited
chi psets that cater to the pre-dom nant curve nodel used in practice
for over 15 years.

Elliptic curves are generally used as objects in a broader

crypt ographi c schene that may include processing steps that depend on
t he representati on conventions used (such as with, e.g., key
derivation foll ow ng key establishnent). These schenes shoul d

(obvi ousl y) unanbi guously specify fixed representations of each input
and output (e.g., representing each elliptic curve point always in
short-Wierstrass formand in unconpressed tight MSB/ nsb format).

To prevent cross-protocol attacks, private keys SHOULD only be used
wi th one cryptographic schene.

Private keys MJUST NOT be reused between Ed25519 (as specified in

[ RFC8032] ) and ECDSA25519 (as specified in Section 4.3). Simlarly,
private keys MJUST NOT be reused between Ed448 (as specified in

[ RFC8032] ) and ECDSA448 (as specified in Section 4.4).

To prevent intra-protocol cross-instantiation attacks, epheneral
private keys MJST NOT be reused between instantiations of ECDSA25519
or of ECDSA448.
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Wth ECDSA25519 and ECDSA448, the sanme private signature key MJUST NOT
be reused between application scenari os where nessage encodi ng and
decoding rules vary, since this may jeopardi ze nessage unforgeability
properties; see also the Note in Section 10.2.1. (In fact, this

hol ds for any signature schene, not just ECDSA.)

9. Privacy Considerations

The transformati ons between different curve nodels described in this
docurnent are publicly known and, therefore, do not affect privacy
provi si ons.

Use of a public key in any protocol for which successful execution
evi dences know edge of the corresponding private key inplicitly
indicates the entity holding this private key. Reuse of this public
key with nore than one protocol or nore than one protocol
instantiation may, therefore, allow traceability of this entity. It
may al so allow correlation of neta-data communi cated with this common
data el enent (e.g., different addressing information), even if an
observer cannot technically verify the binding of this neta-data.

The random zed representati on described in Appendix K 5 all ows random
curve points to be represented as random pairs of field el enents,

t hereby assisting in obfuscating the presence of these curve points
in sonme applications. For representations as random binary strings,
see Appendi x K. 6.

10. Using Wei 25519 and Wi 448 with COSE and JOSE

This section defines algorithm encodi ngs and representati ons enabling
the use of the curves Wei 25519 and Wei 448 and their use with ECDH and
ECDSA with JOSE [ RFC7518] and COSE [ RFC8152] nessages.

Al'l octet string encodi ngs bel ow use the MSB/ nsb-orderi ng conventions
as defined in Appendix |.7. For CBOR representation details, we
refer to [ RFC8949]; for base64url encodings, we refer to [ RFC4648].

10. 1. Using Wi 25519 and Wei 448 Keys with COSE and JOSE

For Weierstrass curves, the representation of the point at infinity O
is curve-specific (see Appendix H 1). For the short-Wierstrass
curve Wei 25519, we define O =(-1,0), whereas for Wi 448, we define

O =(1,0).

The encodi ngs bel ow specify the use of short-W.ierstrass curves with

CCSE (see Section 10.1.1) and JOSE (see Section 10.1.2), where the
encoding for a specific curve results by setting the "crv" paraneter
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to the uni que nanme of the curve in question (i.e., "Wi25519" for the
curve Wei 25519 and "Wei 448" for the curve Wi 448).

10.1.1. Encoding of Short-Wierstrass Curves with COSE

Wth COSE, points of short-Wierstrass curves are encoded using the
"EC2" key type (Section 13.1.1 of [RFC8152]) or the "OKP" key type
(Section 7.2 of [I-D.ietf-cose-rfc8152bis-algs]), which are
instantiated by setting the "crv" paraneter to the (unique) nane of
the curve in question and the "kty" parameter to "EC2" or " OKP"
respectively, where key type-specific settings are as foll ows:

a. Wth the "EC2" type, each affine point (X, Y) is encoded by
setting the paranmeters "x" and "y" to the octet string
representations of the elements X and Y, respectively, in tight
MBB/ nsb- order, and converting each to a CBOR byte string. Each
conpressed point (X, t) is encoded by setting the paraneter "x"
to the octet representation of the element X, in tight MSB/ nsb-
order, converted to a CBOR byte string, and by setting the
paraneter "y" to the CBOR false or CBOR true val ue, depending on
whet her, respectively, t=0 or t=1. For representation details
and for details on the reverse mappi ngs, see Appendix |.8. (Note
that for affine points of a curve defined over a prine field this
representation is consistent with the "EC2" representation in
Section 13.1.1 of [RFC8152].)

b. Wth the "OKP" type, each point is encoded by setting the
paranmeter "x" to the "squeezed" point representation of this
point, in MSB/ nsb-order, and converting this to a CBOR byte
string. For representation details and for details on the
reverse mappi ngs, see Appendix |1.8. (Note that for affine points
of a curve defined over a prinme field this representation is
consistent with the "OKP" representation in Section 7.2 of
[I-D.ietf-cose-rfc8152bis-al gs], which affords a curve-specific
octet string encoding.)

In either case, if the point is a public key (i.e., the private key
is well-defined), the paranmeter "d" encodes the corresponding private
key, using the octet string representation, in tight NMSB/ nsb-order,
and converting this to a CBOR byte string (see Appendix |.6).

For curve points, the "crv" paraneter and the paraneters referenced
with the applicable key type-specific settings above MJST be present
in the structure, whereas the paraneter "d" MJST NOT be present,
while for private keys, the paraneters "crv" and "d" MJST be present
and the applicable key type-specific parameters of the correspondi ng
public-key are RECOVMENDED to be present.
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10. 1. 2. Encoding of Short-Wierstrass Curves wth JOSE

Wth JOSE, points of short-Wierstrass curves are encoded using the
"EC' key type (Section 6.2 of [RFC7518]) or the "OKP' key type
(Section 2 of [RFC8037]), which are instantiated by setting the "crv"
paraneter to the (unique) nane of the curve in question and the "kty"
paraneter to "EC' or "OKP", respectively, where key type-specific
settings are as foll ows:

a. Wth the "EC' type, each affine curve point (X, Y) is encoded by
setting the paraneters "x" and "y" to the octet string
representations of the elenments X and Y, respectively, in tight
VBB/ nsb- order, and converting each using the base64url encodi ng.
The point at infinity Ois encoded as if this were an affine
point. For representation details and details on the reverse
mappi ngs, see Appendix |1.8. (Note that for affine points of a
curve defined over a prine field this representation is
consistent wwth the "EC' representation in Section 6.2 of
[ RFC7518]).)

b. Wth the "OKP" type, each curve point is encoded by setting the
paranmeter "x" to the "squeezed" point representation of this
point, in MSB/ nmsb-order, and converting this using the base64ur
encodi ng. For representation details and for details on the
reverse mappi ngs, see Appendix |1.8. (Note that for affine points
of a curve defined over a prinme field this representation is
consistent with the "OKP" representation in Section 2 of
[ RFCB8037], which affords a curve-specific octet string encoding.)

In either case, if the point is a public key (i.e., the private key
is well-defined), the paraneter "d" encodes the corresponding private
key, using the octet string representation, in tight NMSB/ nsb-order,
and converting this using the base64url encoding (see Appendix |.6).

For curve points, the "crv" paraneter and the paraneters referenced
with the applicable key type-specific settings above MJST be present
in the structure, whereas the paraneter "d" MJST NOT be present,
while for private keys, the paraneters "crv" and "d" MJST be present
and the applicable key type-specific paranmeters of the correspondi ng
publ i c-key are RECOMVENDED to be present.

10. 2. Usi ng ECDSA25519 and ECDSA448 with COSE and JOSE
FIPS Pub 186-4 [FIPS-186-4] specifies the signature schenme ECDSA and
can be instantiated with suitable conbinations of elliptic curves in

short-Weierstrass formand hash functions (that satisfy particul ar
cryptographic criteria). Wile this conpletely specifies the
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10.

internal workings of the signing and signature verification
operations, this does not uniquely specify the input/output formats:

a. The signing operation takes as inputs a nmessage m (represented as
a bit string) and a private key d in the interval [1,n-1] and
produces as output a signature, which is an ordered pair (r, s)
of integers in the interval [1,n-1], where n is the order of the
base point of the curve in question;

b. The signature verification operation takes as inputs a nessage m
a public key Q and a signature (r,s) and produces as output the
value "valid" or "invalid", depending upon whether the nessage
was purportedly signed by a holder of the private key of the
public-private key pair (d, Q for the curve used with the
signature schene in question.

Al inputs and outputs are uniquely determ ned by specifying the
encodi ngs of the nessage m the private key d, the public key Q the
signature, and the values "valid" and "invalid".

The encodi ngs bel ow specify the use of instantiations of ECDSA with
CCSE (see Section 10.2.1) and JOSE (see Section 10.2.2), where the
encoding for a specific ECDSA instantiation (i.e., wth a specific
short-Wi erstrass curve and specific hash function) results by
setting the "crv" paranmeter to the unique nanme of the underlying
curve in question and the "alg" paraneter to the unique nane of the
specific signature schene instantiation. For JOSE, this is realized
by setting the "al g" paraneter to "ECDSA25519" for the ECDSA schene
defined in Section 4.3 and to "ECDSA448" for the schenme defined in
Section 4.4. For COSE, this is realized by setting the "al g"
paranmeter to "ES256" (short-hand for "ECDSA with SHA-256") for the
ECDSA schene defined in Section 4.3 and to "ECDSA wi th SHAKE256" f or
the schene defined in Section 4.4. Note that, in the case of JOSE
the "al g" nane uni quely defines the curve (and, thereby, inplicitly
the underlying "crv" paraneter) and the underlying hash functi on,
while in the case of COSE, the "al g" nane uniquely defines the
underlying hash function, but not the underlying curve.

2.1. Encoding of ECDSA Instantiations with COSE

I nstanti ati ons of ECDSA used with COSE use the foll ow ng encodi ngs of
i nputs and out puts:

a. The nessage mis the COSE Sig structure as specified in
Section 4.4 of [RFC8152], converted to the CBOR byte string
ToBeSi gned in accordance with the Core Determ nistic Encoding
Requi rements of Section 4.2.1 of [RFC8949]), converted to a bit
string using the OS2BS mappi ng of Appendi x |.4;
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10.

b. The public key Q and the private key d are encoded as specified
in Section 10.1.1, where the "crv" paraneter is set to the unique
nanme of the curve used with this particular instantiation of
ECDSA,;

c. The Cose signature is encoded as the right-concatenation of the
octet string representations of the coordinates of the signature
pair (r, s), in left-to-right order, where r and s are each
represented as octet strings in tight MSB/ nsb-order using the
ZnE20CS mappi ng of Appendix 1.6, converted to a CBOR byte string.
Note that, since we use a tight representation, this right-
concatenated octet string has fixed size 2*|I, where the paraneter
| is uniquely defined by the set Z n in question (where n is the
(prime) order of the base point of the curve in question). The
i nverse mapping results by checking that the purported encoded
signature (after CBOR decodi ng) has indeed size 2*|, and by
converting the left-side and right-side halves of this octet
string (each of length I) to, respectively, the integers r and s
in Zn, via the strict OS2ZnE mappi ng of Appendi x |.86.

When using a COSE key for this algorithm if the "alg" fieldis
present, it MJST be set to the (unique) nane of this particular
instantiation of ECDSA and the "crv" paranmeter MJST be set to the
(uni que) nanme of the corresponding curve; if the "key ops" field is
present, it MJST include "sign" when creating an ECDSA signature and
it MJUST include "verify" when verifying an ECDSA signature.

NOTE: Care should be taken that signers and verifiers do have a
common under st andi ng of nessage encodi ng rul es, since otherw se
signature verification may fail for messages with the sanme semanti cs.
As an exanple, if there is anbiguity as to whether to represent the
binary digit 0 as the integer 0 or as the CBOR fal se val ue
(represented as the CBOR bit string b0O00_00000 or bl1l 10100,
respectively), signing and signature verification nmay depend on
different ToBeSigned strings and, thereby, may fail unexpectedly.
This explains the (strong) requirenent for determ nistic encoding
rul es above and, thereby, the requirenent for strong typing of any
CBOR encodi ngs used with signed nessages. Further care should be

t aken that nmessage decoding rul es are al ways unanbi guous, since

ot herwi se the semantics of signed nessages may not be clear or the
unforgeability property of signatures may be | eopardi zed.

2.2. Encoding of ECDSA Instantiations with JOSE

Instantiations of ECDSA used with JOSE use the follow ng encodi ngs of
i nputs and out puts:
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a. The nessage mis the JW5 Signing Input as specified in [RFC7515],
converted to a bit string, using the OS2BS mappi ng of
Appendi x | . 4;

b. The public key and the private key are encoded as specified in
Section 10.1.2, where the "crv" paraneter is set to the unique
name of the curve used with this particular instantiation of
ECDSA;

c. The JWS signature is encoded as the right-concatenation of the
octet string representations of the coordinates of the signature
pair (r, s), inleft-to-right order, where r and s are each
represented as octet strings in tight NMSB/ nsb-order using the
ZnE20S mappi ng of Appendi x 1.6, converted using the base64ur
encoding. Note that, since we use a tight representation, this
ri ght-concatenated octet string has fixed size 2*|, where the
paraneter | is uniquely defined by the set Z n in question (where
nis the (prinme) order of the base point of the curve in
guestion). The inverse mapping results by checking that the
purported encoded signature (after base64url decodi ng) has indeed
size 2*1, and by converting the |eft-side and right-side hal ves
of this octet string (each of length |I) to, respectively, the
integers r and s in Z n, via the strict 0OS2ZnE mappi ng of
Appendi x | . 6.

When using a JOSE key for this algorithm if the "alg" field is
present, it MJST be set to the (unique) nane of this particular

i nstantiation of ECDSA and the "crv" parameter MJST be set to the
(uni que) nanme of the corresponding curve; if the "key ops" field is
present, it MJST include "sign" when creating an ECDSA signature and
it MJUST include "verify" when verifying an ECDSA signature; if the
JWK use_ field is present, its value MJST be "sig".

3. Using ECDH25519 and ECDH448 with COSE and JOSE

Section 6.1.2.2 of NIST SP 800-56a [ SP-800-56a] specifies the co-
factor elliptic-curve Diffie-Hellman key agreenent schenme (co-factor
ECDH) and can be instantiated with a suitable elliptic curve in
short-Wierstrass form (that satisfies particular cryptographic
criteria). Wile this conpletely specifies the internal workings of
the key agreenent schene in question, this does not uniquely specify
t he i nput/output formats:

a. The co-factor Diffie-Hellman primtive (Section 5.7.1.2 of
[ SP-800-56a]) takes as inputs a private key d in the interval
[1,n-1] fromone of the parties and a point @ obtained fromthe
ot her party and produces the shared key K =h*(d*Q ), where h and
n are, respectively, the co-factor and the order of the base
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poi nt of the curve in question and where Q is a point of this
curve. |If this shared key Kis the point at infinity O of the
curve, the output is an error indicator;

b. If the shared key Kis an affine point of the curve, the output
is the (raw) shared secret Z, which is the fixed-size octet
representation of the x-coordinate of K, using the FE20S mappi ng
of Appendix 1.5, represented in tight-MSB/ nsb-order (see

Appendi x 1.7).

(NOTE: A subsequent key derivation function (kdf) takes as inputs
the shared secret Z and side information Qtherlnfo and produces
as output an octet string of DerivedKeyingMaterial, where details
depend on the used kdf in question. This step is out of scope.)

The inputs and outputs are uniquely determ ned by specifying the
encodi ngs of private keys, curve points, and the error indicator for
this key agreenent schene.

The encodi ngs bel ow specify the use of instantiations of ECDH with
COSE (see Section 10.3.1) and JOSE (see Section 10.3.2), where the
encoding for a specific co-factor ECDH instantiation (i.e., with a
specific short-Wierstrass curve) results by setting the "crv"
paraneter to the uni que nanme of the underlying curve in question and
the "al g" paranmeter to the uni que nanme of the specific key agreenent
schenme instantiation (i.e., "ECDH25519" for the co-factor ECDH schene
defined in Section 4.1 and "ECDH448" for the scheme defined in
Section 4.4). Note that, in this case, the "al g" nanme uniquely
defines the curve (and, thereby, inplicitly the underlying "crv"

par aneter).

10.3.1. Encoding of co-factor ECDH with COSE

Instantiations of co-factor ECDH used with COSE use the follow ng
encodi ngs of inputs and outputs:

a. Curve points and private keys are encoded as specified in
Section 10.1.1, where the "crv" paraneter is set to the unique
name of the curve used with this particular instantiation of
ECDH

When using a COSE key for this algorithm if the "alg" field is
present, it MJST be set to the (unique) nane of this particul ar
instantiation of co-factor ECDH and the "crv" paraneter MJUST be set
to the (unique) name of the corresponding curve; if the "key_ops”
field is present, it MJST include "derive shared secret" for the
private key.
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10. 3. 2. Encoding of co-factor ECDH with JOSE

Instantiations of co-factor ECDH used with JOSE use the follow ng
encodi ngs of inputs and outputs:

a. Curve points and private keys are encoded as specified in
Section 10.1.2, where the "crv" paraneter is set to the unique
name of the curve used with this particular instantiation of
ECDH

When using a JOSE key for this algorithm if the "alg" field is
present, it MJST be set to the (unique) nane of this particul ar
instantiation of co-factor ECDH and the "crv" paranmeter MJST be set
to the (unique) nanme of the corresponding curve; if the "key_ops"
field is present, it MJST include "derive shared secret” for the
private key.

11. Using Wei 25519 and Wi 448 with PKI X and CVS

This section illustrates how to use the curves Wi 25519 and Wi 448
with ECDH and ECDSA with PKI X certificates (see [ RFC5280] and
[ RFC5480]) and with CVS (see [ RFC5652] and [ RFC5753]).

11.1. Encoding of Short-Wierstrass Curves with PKIX

The nanedCurve field in the ECParaneters field in the

Subj ect Publ i cKeyl nfo structure [ RFC5280] indicates the elliptic curve
domai n paraneters for a specific curve, via a unique nanme of the
curve in gquestion (where these are the unique object identifiers id-
Wei 25519 for the curve Wi 25519 and id-Wei 448 for the curve Wi 448).

Affine and conpressed curve points are encoded using the "SECL"-
representation (see Note 2 of Appendix |1.8), using the tight MSB/ nsb-
ordering conventions. This is consistent with the representation in
Section 2.2 of [RFC5480], after correcting for the error in [SECL]
(for the correction, see Note in Appendix H1).

11. 2. Encoding of ECDSA Instantiations with PKIX

ECDSA25519, as defined in Section 4.3, is the instantiation of ECDSA
wth SHA-256 and with curve Wi 25519. Wth [ RFC5480], ECDSA can be
instantiated with suitable elliptic curves and hash functions. This
all ows support for ECDSA25519 by instantiating ECDSA with the curve
Wei 25519 and the hash function SHA-256, where curve Wi 25519 is
identified by its object identifier id-Wi25519 (see Section 11.1),
where ECDSA with SHA-256 is identified by the object identifier id-
ecdsa-w t h- SHA256 (see [ RFC5480]), and where all other aspects are
specified in [ RFC5480] .
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12.

ECDSA448, as defined in Section 4.4, is the instantiation of ECDSA
wi th SHAKE256 with out put size d=512 bits and with curve Wi 448.
Wth [ RFC5480], ECDSA can be instantiated with suitable elliptic
curves and hash functions. This allows support for ECDSA448 by
instantiating ECDSA with the curve Wi 448 and the hash function
SHAKE256 wi th out put size of d=512 bits, where curve Wi 448 is
identified by its object identifier id-Wi448 (see Section 11.1),
where ECDSA with SHAKE256 with output size of d=512 bits is
identified by the object identifier id-ecdsa-wth-shake256 (see

[ RFCB8692] ), and where all other aspects are specified in [ RFC5480].

3. Encoding of co-factor ECDH and O her Al gorithns with PKIX

Wth [RFC5480], the algorithmfield in the SubjectPublicKeylnfo
structure indicates the algorithmand the elliptic curve domain
paraneters for a specific curve, where that specification defines
three algorithmidentifiers (viz. id-ecPublicKey, id-ecDH and id-
ecMV). Each of these algorithns can be instantiated with suitable
elliptic curves, thereby allow ng support for their use with the
curves Wi 25519 and Wi 448, where these curves are identified by
their unique object identifiers id-Wi25519 and id-Wi 448,
respectively, (see Section 11.1) and where all other aspects are
specified in [ RFC5480] .

4. Encoding of Elliptic-Curve-Based Al gorithnms with CMS

Wth [RFC5753], elliptic-curve based algorithnms should use one of the
elliptic curve domain paraneters specified in [ RFC5480], where the
uni que nanme of each such curve is identified by the object identifier
of this curve defined in that docunent. Each of these algorithns can
be instantiated with suitable elliptic curves, thereby all ow ng
support for their use with the curves Wi 25519 and Wi 448, where
these curves are identified by their unique object identifiers id-

Wei 25519 and i d-Wei 448, respectively, (see Section 11.1) and where
all other aspects are specified in [ RFC5753].

| ANA Consi der ati ons

Code points are requested for curves Wi 25519 and Wi 448 and their
use with ECDSA and co-factor ECDH, using the representation
conventions of this docunent.

New code points would be required in case one wi shes to specify one
or nore other "offspring” protocols beyond those exenplified in
Section 4.4. Specification hereof is, however, outside the scope of
t he current document.
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12.1. OADs for Use with PKI X and CM5

This section registers the follow ng object identifiers for the
curves introduced in this docunent:

a. id-Wei25519 OBJECT | DENTIFIER ::= TBD (Requested val ue: {iso(1)
i dentified-organi zation(3) thawmte (101) 108 });

b. id-Wi448 OBJECT I DENTIFIER ::= TBD (Requested val ue: {iso(1)
i dentified-organi zation(3) thawme (101) 109 }).

For a description of how these are used with PKIX certificates and
CMVS, see Section 11

12.2. COSE/ JOSE | ANA Consi derations for Wi 25519
12.2.1. COSE Elliptic Curves Registration

This section registers the followng value in the I ANA "COSE Elliptic
Curves" registry [I ANA. COSE. Curves].

Nane: Wei 25519;
Val ue: TBD (Requested value: -1);
Key Type: EC2 or KP

Description: short-Wierstrass curve Wi 25519;
Change Controller: 1ESG

Ref er ence: specified in Appendix E.3 of this specification; for
encodi ngs, see Section 10.1;

Recommended: Yes.
(Note that The "kty" value for Wi 25519 may be "EC2" or "OKP".)
12.2.2. COSE Al gorithns Registration

This section registers the following value in the | ANA " COSE
Al gorithnms" registry [IANA. COSE. Al gorithns].

Nane: ECDH25519;

Val ue: TBD ( Request ed val ue: -24);
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Description: N ST-conpliant co-factor Diffie-Hell man w curve
Wei 25519 and key derivation functi on HKDF SHA256;

Change Controller: 1ESG

Ref er ence: specified in Section 4.1 of this specification; for
encodi ngs, see Section 10. 3;

Reconmended: Yes.
2.3. JOSE Elliptic Curves Registration

This section registers the following value in the [ ANA "JSON Wb Key
Elliptic Curve" registry [IANA JOSE. Curves].

Curve Nane: Wi 255109;

Curve Description: short-Wierstrass curve Wi 25519;
JOSE | npl enentati on Requirenments: Optional;

Change Controller: 1ESG

Reference: specified in Appendix E.3 of this specification; for
encodi ngs, see Section 10.1.

(Note that The "kty" value for Wi 25519 nay be "EC' or "OKP".)
2.4. JOSE Algorithns Registration (1/2)

This section registers the followng value in the | ANA "JSON Wb
Signature and Encryption Algorithms" registry [ ANA. JOSE. Al gorithns].

Al gorithm Name: ECDSA255109;

Al gorithm Description: ECDSA using SHA-256 and curve Wi 25519;
Al gorithm Usage Locations: alg;

JOSE | npl enentati on Requirenments: Optional;

Change Controller: 1ESG

Reference: specified in Section 4.3 of this specification; for
encodi ngs, see Section 10. 2;

Al gorithm Anal ysis Docunent(s): Section 4.3 of this specification.
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12.2.5. JOSE Al gorithns Registration (2/2)

This section registers the followng value in the | ANA "JSON Wb
Si gnature and Encryption Algorithnms" registry [I ANA JOSE. Al gorithns].

Al gorithm Name: ECDH255109;

Al gorithm Description: N ST-conpliant co-factor Diffie-Hellman w
curve Wei 25519 and key derivation function HKDF SHA256;

Al gorithm Usage Locations: alg;
JOSE | npl enentati on Requirenments: Optional;
Change Controller: [1ESG

Reference: specified in Section 4.1 of this specification; for
encodi ngs, see Section 10. 3;

Al gorithm Anal ysis Docunment(s): Section 4.1 of this specification.
12.3. COSE/ JOSE | ANA Consi derations for Wi 448
12.3.1. COSE Elliptic Curves Registration

This section registers the followng value in the I ANA "COSE Elliptic
Curves" registry [IANA. COSE. Curves].

Nane: Wi 448;
Val ue: TBD ( Requested val ue: -2);
Key Type: EC2 or OKP;

Description: short-Wierstrass curve Wi 448;
Change Controller: [1ESG

Ref er ence: specified in Appendix M3 of this specification; for
encodi ngs, see Section 10.1;

Recomrended: Yes.

(Note that The "kty" value for Wi 448 may be "EC2" or "OKP".)
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12.3.2. COSE Algorithnms Registration (1/2)

This section registers the follow ng value in the | ANA "COSE
Al gorithns" registry [I ANA COSE. Al gorithns].

Name: ECDSA wi t h SHAKE256;

Val ue: TBD ( Requested val ue: -48);
Description: ECDSA with SHAKE256;

Change Controller: [1ESG

Ref er ence: specified in Section 4.4 of this specification; for
encodi ngs, see Section 10. 2;

Recommended: Yes.
12.3.3. COSE Algorithnms Registration (2/2)

This section registers the following value in the | ANA "COSE
Al gorithns" registry [I ANA COSE. Al gorithns].

Name: ECDH448;
Val ue: TBD ( Requested val ue: -49);

Description: N ST-conpliant co-factor Diffie-Hellman w curve Wi 448
and key derivation functi on HKDF SHA512;

Change Controller: [1ESG

Ref er ence: specified in Section 4.4 of this specification; for
encodi ngs, see Section 10.1; for key derivation, see
Section 11.1 of [RFC8152];

Recommended: Yes.

12.3.4. JOSE Elliptic Curves Registration

This section registers the followng value in the | ANA "JSON Wb Key
Elliptic Curve" registry [IANA JOSE. Curves].

Curve Nane: Wi 448;
Curve Description: short-Wierstrass curve Wi 448;

JOSE | npl enentati on Requirenments: Optional;
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Change Controller: [1ESG

Ref erence: specified in Appendix M3 of this specification; for
encodi ngs, see Section 10.1.

(Note that The "kty" value for Wi 448 may be "EC' or "CKP'.)
12.3.5. JOSE Algorithns Registration (1/2)

This section registers the following value in the | ANA "JSON Wb
Si gnature and Encryption Al gorithnms" registry [| ANA JOSE. Al gorithns].

Al gorithm Nanme: ECDSA448;

Al gorithm Description: ECDSA using SHAKE256 and curve Wi 448;
Al gorithm Usage Locations: alg;

JOSE | npl enentati on Requirenments: Optional;

Change Controller: [1ESG

Reference: specified in Section 4.4 of this specification; for
encodi ngs, see Section 10. 2;

Al gorithm Anal ysis Docunment(s): Section 4.4 of this specification.
12.3.6. JOSE Al gorithns Registration (2/2)

This section registers the followng value in the | ANA "JSON Wb
Signature and Encryption Algorithnms" registry [ ANA. JOSE. Al gorithns].

Al gorithm Name: ECDH448;

Al gorithm Description: N ST-conpliant co-factor Diffie-Hellman w
curve Wei 448;

Al gorithm Usage Locations: alg;
JOSE | npl enentati on Requirenments: Optional;
Change Controller: 1ESG

Reference: specified in Section 4.4 of this specification; for
encodi ngs, see Section 10. 3;

Al gorithm Anal ysis Docunent(s): Section 4.4 of this specification.
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endix A.  Sone (Non-Binary) Elliptic Curves

This section defines the three different curve nodels we consider,
viz. short-Wierstrass curves, Mntgonery curves, and tw sted Edwards
curves. For nonencl ature, see Appendi x B.

Curves in Short-Wierstrass Form

Let GF(q) denote the finite field wwth g el enents, where q is an odd
prime power and where g is not divisible by three. Let W{a, b} be
the Weierstrass curve with defining equation Y*2 = X*"3 + a*X + b,
where a and b are elenments of G-(q) and where 4*a”"3 + 27*b"2 is
nonzero. The points of W{a,b} are the ordered pairs (X, Y) whose
coordi nates are elenents of GF(q) and that satisfy the defining
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equation (the so-called affine points), together with the speci al
point O (the so-called "point at infinity"). This set forns a group
under addition, via the so-called "chord-and-tangent” rule, where the
point at infinity serves as the identity elenment. See Appendix C 1
for details of the group operation.

A quadratic twist of W{a,b} is a curve W{a' ,b'} defined over the
same field for which a := a*ganma”2 and b’ : =b*gamma”"3, where ganma is
an element of G-(q) that is not a square in G~(Q).

A 2. Mntgonery Curves

Let GF(q) denote the finite field wwth gq el enents, where q is an odd
prime power. Let M{A B} be the Montgonery curve with defining
equation B*v"2 = u*"3 + A*u”2 + u, where A and B are elenents of G-(Q)
and where A is unequal to (+/-)2 and where B is nonzero. The points
of M{A B} are the ordered pairs (u, v) whose coordinates are

el emrents of GF(g) and that satisfy the defining equation (the so-
called affine points), together with the special point O (the so-
called "point at infinity"). This set forns a group under addition,
via the so-called "chord-and-tangent” rule, where the point at
infinity serves as the identity elenment. See Appendix C. 2 for
details of the group operation.

A quadratic twst of M{A B} is a curve M{A ,B } defined over the
same field for which A':= A and B : =B*gamm, where ganma is an
el enent of GF(q) that is not a square in G-(Q).

A. 3. Twi sted Edwards Curves

Let GF(q) denote the finite field wwth g el enents, where q is an odd
prinme power. Let E {a,d} be the twi sted Edwards curve with defining
equation a*x"2 + y"2 = 1+ d*x"2*y"2, where a and d are distinct
nonzero el enents of G-(q). The points of E {a,d} are the ordered
pairs (x, y) whose coordinates are elenents of GF(g) and that satisfy
t he defining equation (the so-called affine points). It can be shown
that this set forns a group under addition if a is a square in GF(Q),
whereas d is not, where the point O=(0, 1) serves as the identity
elenment. (Note that the identity elenment satisfies the defining
equation.) See Appendix C 3 for details of the group operation.

(Al curves E {a,d} in this docunent are assuned to satisfy the
condition on domain paraneters a and d above and, thereby, satisfy
the Note in that appendix.)

An Edwards curve is a twi sted Edwards curve with a=1.
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A quadratic twist of E {a,d} is a curve E {a ,d } defined over the
same field for which a’:= a*gamma and d’: =d*ganma, where gamm is an
el enent of GF(q) that is not a square in G-(Q).

Appendix B. Elliptic Curve Nonenclature and Finite Fields

Thi s section provides brief background information on elliptic curves
and finite fields that should be sufficient to understand
constructions and exanples in this docunent.

B.1. Elliptic Curve Nonencl ature

The set of points of each curve defined in Appendix A forns a

commut ative group under addition (denoted by "+ ). In Appendix C we
speci fy the group | aws, which depend on the curve nodel in question.
For conpl eteness, we here include some common elliptic curve

nomencl ature and basic properties (primarily so as to keep this
docunent self-contained). These notions are mainly used in

Appendi x E and Appendi x G and not essential for our exposition. This
section can be skipped at first reading.

Any point P of a curve E is a generator of the cyclic subgroup
<P>.={k*P| k =0, 1, 2,...} of the curve. (Here, k*P denotes the
sum of k copies of P, where O*P is the identity elenment O of the
curve; k*P is commonly referred to as scalar nultiplication of P by
k.) If <P> has cardinality |, then | is called the order of P and
is the small est positive integer so that |*P=0. The order of curve E
is the cardinality of the set of its points, commonly denoted by | E
A curve is cyclic if it is generated by sone point of this curve.

Al curves of prinme order are cyclic, while all curves of order h*n,
where n is a large prinme nunber and where h is a small nunber (the
so-cal l ed co-factor), have a |large cyclic subgroup of prine order n.
In this case, a generator of order n is called a base point, commonly
denoted by G while a point of order dividing his said to be in the
smal | subgroup (or said to be a | oworder point). For curves of
prime order, this small subgroup is the singleton set, consisting of
only the identity elenent O A point that is not in the snal
subgroup is said to be a high-order point (since it has order at
least n). A point P of the curve is in the small subgroup if h*P=0
(and is a high-order point otherwise); this point P has order n if
n*P=0O and if it is not the identity elenent O. (The latter order
check is commonly called full public key validation.) The above
definitions extend to curves with a relatively large co-factor, by
defining n to be the size of its largest prime-order subgroup.

If Ris a point of the curve that is also contained in <P>, there is

a unique integer k in the interval [0, I-1] so that R=k*P, where | is
the order of P. This nunber is called the discrete logarithmof Rto
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the base P. The discrete logarithmproblemis the problem of finding
the discrete logarithmof R to the base P for any two points P and R
of the curve, if such a number exists.

Random poi nts R of <P>, where P has order |, can be conputed by
generating a randominteger k in the interval [0, |-1] and by
subsequent|ly conputing R =k*P, where R then has order |/gcd(k,l). In
particular, if Pis a high-order point (of curve E of order h*n),
then so is R unless kis a multiple of n (in which case Ris a | ow
order point). For nmethods for generating k, see Appendix P.

If Pis a fixed base point Gof the curve, the pair (k, R=k*Q is

commonly called a public-private key pair, the integer k the private
key, and the point R the corresponding public key. The private key k
can be represented as an integer in the interval [0,n-1], where G has

order n. If this representation is nonzero, R has order n;
otherwise, it has order one and is the identity elenment O of the
curve.

A curve E defined over the field G-(g) has order |E relatively close
to g0 Mre precisely, |E =g+1-t for sone integer t (the so-called
trace) with absolute value at nost 2*|sqrt(q)|. This is conmonly
referred to as the Hasse bound.

In this docunent, a quadratic twist of a curve E defined over a field
GF(q) is a specific curve E related to E defined over the sane
field, wwth cardinality |E |, where |E +|E |=2*(q+l). If Eis a
curve in one of the curve nodels specified in this docunent, a
guadratic twist E of this curve can be expressed using the sane
curve nodel, although (naturally) with its own curve paraneters (see
Appendi x A). Points that are points of both E and E have order one
or two. Two curves E1 and E2 defined over the field GF(q) are said
to be isogenous if these have the sane order and are said to be

i sonorphic if the defining equation of E1 can be transformed into the
defining equation of E2 via a so-called adm ssi bl e change of

vari ables. Note that isonorphic curves have necessarily the sane
order and are, thus, a special case of isogenous curves. |sonorphic
curves have the same group structure, whereas this is not necessarily
the case for isogenous curves. Further details are out of scope.

Curves in short-Wierstrass formcan have prine order, whereas
Mont gonery curves and tw sted Edwards curves al ways have an order
that is a nultiple of four (and, thereby, a small subgroup of
cardinality four).

An ordered pair (x, y) whose coordinates are el enents of G-(q) can be

associated with any ordered triple of the form|[x*z: y*z: z], where z
is a nonzero elenent of GF(q), and can be uniquely recovered from
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such a representation. The latter representation is comonly called
a representation in projective coordi nates. Sonetines, yet other
representations are useful (e.g., representation in Jacobian
coordinates). Further details are out of scope.

The group laws in Appendix C are nostly expressed in terns of affine
poi nts, but can also be expressed in terns of the representation of
t hese points in projective coordinates, thereby allow ng clearing of
denom nators. The group |aws may al so i nvol ve non-affine points
(such as the point at infinity O of a Wierstrass curve or of a

Mont gonery curve). Those can also be represented in projective
coordi nates. Further details are out of scope.

B.2. Finite Fields
The field GF(q), where q is a prine power, is defined as foll ows.

If g-=p is a prime nunber, the field G-(p) consists of the integers
in the interval [0,p-1] and two binary operations on this set:
addition and nmultiplication nmodulo p. This field is comonly call ed
a prine field. The additive and multiplicative identity elenents are
0 and 1, respectively.

If g:=p™"m where p is a prinme nunber and where nm»0, the field G-(Q)
is defined in ternms of an irreducible polynomal f(z) in z of degree
mw th coefficients in Ge(p) (i.e., f(z) cannot be witten as the
product of two polynomals in z of | ower degree with coefficients in
GF(p)): in this case, GF(q) consists of the polynomals in z of
degree smaller than mwth coefficients in G-(p) and two binary
operations on this set: polynom al addition and pol ynom al

mul tiplication nodulo the irreducible polynomal f(z). By
definition, each element x of G-(qg) is a polynomal in z of degree
small er than mand can, therefore, be uniquely represented as a
vector (x_ {m1}, x {m2}, ..., x_ 1, x 0) of length mwith
coefficients in G-(p), where x_i is the coefficient of z”i of
polynom al x. Note that this representati on depends on the

i rreduci bl e polynomal f(z) of the field GF(p”m) in question (which
is often fixed in practice). Note that G-(qg) contains the prine
field G-(p) as a subset. [If mel, the definitions of GF(p) and
GF(p™1) above coincide, since each nonzero el enment of G-(p) can be
viewed as a polynomal in z of degree zero. |If npl (i.e., if gis a
strict prime power), then G-(qg) is called a (nontrivial) extension
field of GF(p). The nunber p is called the characteristic of G~(Q).

Any nonzero elenent g of GF(q) is a generator of the cyclic
mul tiplicative subgroup <g>:={g"k | k =0, 1, 2,...} of GF(qg)\{O0}.
(Here, g~k denotes the product of k copies of g, where g0 is the
multiplicative identity element 1 of G-(q)\{0}.) If <g> has
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cardinality I, then | is called the order of g and | is the small est
positive integer so that gl =1. For each finite field G-(q), the set
G-(q)\{0} fornms a cyclic group, i.e., it is generated by some nonzero

el enent hereof. Each such generator is called a primtive el enent of
GF(g) and has order g-1. Each nonzero elenent of G-(q) has order
dividing g-1 (a property conmmonly referred to as Fermat’'s Little
Theoren).

Afield elenent y is called a square in G=(q) if it can be expressed
as y:=x"2 for sone x in G-(q); it is called a non-square in G-(q)

otherwise. |If y is a square in G-(q), we denote by sqrt(y) one of
its square roots (the other one being -sqrt(y)). For nethods for
conmputing square roots in GF(q) - if these exist - and for conputing

inverses in GF(g)\{0}, see Appendix K. 1 and Appendi x K. 2,
respectively. For nmethods for nmapping a nonzero field el enent that
is not a square in GF(q) to a point of a curve, see Appendix K. 3 (or
see Appendix K. 4, if one wishes to always obtain a high-order point
of the curve in question).

NOTE: The curves in Appendi x E and Appendix G are all defined over a
prime field G-(p), thereby reducing all operations to sinple nodul ar
integer arithmetic. Strictly speaking we could, therefore, have
refrained fromintroduci ng extension fields. Nevertheless, we

i ncluded the nore general exposition, so as to accommbdate potenti al
i ntroduction of new curves that are defined over a (nontrivial)
extension field at some point in the future. This includes curves
proposed for post-quantum i sogeny-based schenes, which are defined
over a quadratic extension field (i.e., where g:=p"2), and elliptic
curves used wth pairing-based cryptography. The exposition in
either case is alnost the same and now automatically yields, e.g.,
data conversion routines for any finite field object (see

Appendi x 1). Readers not interested in this could sinply view all
fields as prinme fields.

Appendix C. Elliptic Curve G oup Operations
This section specifies group operations for elliptic curves in short-
Wi erstrass form for Montgonery curves, and for tw sted Edwards
curves.

C.1l. Goup Laws for Weierstrass Curves

For each point P of the Wierstrass curve W{a, b}, the point at
infinity O serves as identity elenent, i.e., P+ O=0+P =P

For each affine point P.=(X, Y) of the Wierstrass curve W{a, b}, the

point -Pis the point (X, -Y) and one has P+ (-P) = O (i.e., -Pis
the inverse of P). For the point at infinity O, one has -O =0
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Let Pl:=(X1, Y1) and P2:=(X2, Y2) be distinct affine points of the
Wei erstrass curve W{a,b} and let Q=P1 + P2, where Qis not the
identity element. Then Q=(X, Y), where

X+ X1 + X2 = lanbda®2 and Y + Y1 = lanbda*(X1L - X), where
lanbda: = (Y2 - Y1)/ (X2 - X1).

Let P:=(X1, Y1) be an affine point of the Wierstrass curve W{a, b}
and let Q=2*P, where Qis not the identity elenent. Then Q=(X, Y),
wher e

X + 2*X1 = lanbda™2 and Y + Y1 = |lanbda*(X1 - X), where
| anbda: =(3*X1"2 + a)/ (2*Y1).

Fromthe group | aws above it follows that if P=(X YY), P1=(X1l, Y1),
and P2=(X2, Y2) are distinct affine points of the Wierstrass curve
W{a,b} with P2:=P+P1 and if Y is nonzero, then the Y-coordinate of
P1 can be expressed in terns of the X-coordinates of P, Pl, and P2,
and the Y-coordinate of P, since

2% Y* Y1=( X* X1+a) * ( X+X1) +2* b- X2* ( X- X1) ~2.

This property allows recovery of the Y-coordinate of a point Pl1=k*P

that is conputed via the so-called Montgonery | adder, where P is an

affine point with nonzero Y-coordinate (i.e., it does not have order
two). For future reference, note that the expressi on above uni quely
determ nes the X-coordinate of P2 in terns of the X-coordinates of P
and Pl and the product of their Y-coordinates. Further details are

out of scope.

C.2. Goup Laws for Mntgonery Curves

For each point P of the Montgonery curve M{A B}, the point at
infinity O serves as identity elenent, i.e., P+ O=0+P =P

For each affine point P:=(u, v) of the Montgonery curve M{A B}, the
point -Pis the point (u, -v) and one has P + (-P) = O (i.e., -Pis
the inverse of P). For the point at infinity O, one has -O =0
Let P1:=(ul, v1) and P2:=(u2, v2) be distinct affine points of the
Mont gonery curve M{A B} and let Q=P1 + P2, where Qis not the
identity element. Then Q=(u, v), where

u+ ul + u2 = B*lanbda”2 - A and v + vl = |anbda*(ul - u), where

| anmbda: =(v2 - v1)/(u2 - ul).
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Let P:=(ul, v1) be an affine point of the Montgomery curve M{A B}
and let Q=2*P, where Qis not the identity elenment. Then Q=(u, v),
wher e

u + 2*ul = B*lanbda”2 - A and v + vl = | anbda*(ul - u), where
| anmbda: =(3*ul”2 + 2*A*ul+l)/ (2*B*vl).

Fromthe group | aws above it follows that if P=(u, v), P1=(ul, vl),
and P2=(u2, v2) are distinct affine points of the Montgonery curve
M{A B} with P2:=P+P1 and if v is nonzero, then the v-coordi nate of
P1 can be expressed in terns of the u-coordinates of P, Pl, and P2,
and the v-coordinate of P, since

2*B*v*v1=(u*ul+l) *(u+ul+2*A) - 2* A-u2*(u-ul)"2.

This property allows recovery of the v-coordi nate of a point Pl=k*P

that is conputed via the so-called Montgonery | adder, where P is an

affine point with nonzero v-coordinate (i.e., it does not have order
two). For future reference, note that the expression above uniquely
determ nes the u-coordinate of P2 in terns of the u-coordinates of P
and Pl and the product of their v-coordinates. Further details are

out of scope.

C.3. Goup Laws for Tw sted Edwards Curves
Not e: The group |laws bel ow hold for tw sted Edwards curves E {a, d}
where a is a square in G-(q), whereas d is not. 1In this case, the
addition fornul ae bel ow are defined for each pair of points, wthout
exceptions. Ceneralizations of this group law to other tw sted
Edwar ds curves are out of scope.

For each point P of the tw sted Edwards curve E {a,d}, the point
O =(0,1) serves as identity elenment, i.e., P+ O=0+ P = P.

For each point P:.=(x, y) of the twi sted Edwards curve E {a,d}, the
point -Pis the point (-x, y) and one has P + (-P) = O (i.e., -Pis
t he inverse of P).

Let P1:=(x1, yl1) and P2:=(x2, y2) be points of the tw sted Edwards
curve E {a,d} and let Q=P1 + P2. Then Q=(x, y), where

X = (x1*y2 + x2*yl)/(1 + d*x1*x2*yl*y2) and
y = (yl*y2 - a*x1*x2)/(1 - d*x1*x2*yl*y2).

Let P:=(x1, yl) be a point of the tw sted Edwards curve E {a,d} and
let Q=2*P. Then &(x, y), where
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X (2*x1*yl)/ (1 + d*x172*y1~2) and

y = (Y172 - a*x172)/(1 - d*x172%y1r2).

Note that one can use the formulae for point addition for point
doubl i ng, taking inverses, and adding the identity el enent as well
(i.e., the point addition fornulae are uniform and conpl ete (subject
to our Note above)).

From the group | aws above (subject to our Note above) it follows that
if P=(x, y), P1=(x1, yl), and P2=P=(x2, y2) are points of the tw sted
Edwards curve E {a,d} with P2:=P+P1 and if x is nonzero, then the
x-coordi nate of P1 can be expressed in terns of the y-coordinates of
P, Pl1, and P2, and the x-coordinate of P, since

x*x1*(a-d*y*yl*y2)=y*yl-y2.

(Here, observe that a-d*y*yl*y2 is nonzero per our Note above.) This
property allows recovery of the x-coordinate of a point P1=k*P that
is conputed via the so-called Mntgonery | adder, where P is an affine
point with nonzero x-coordinate (i.e., it does not have order one or
two). For future reference, note that the group | aw (subject to our
Not e above) uniquely determ nes the y-coordinate of P2 in terns of
the y-coordinates of P and P1 and the product of their x-coordinates.
Further details are out of scope.

Appendi x D. Rel ationshi ps Between Curve Model s

The non-binary curves specified in Appendix A are expressed in

di fferent curve nodels, viz. as curves in short-Wierstrass form as
Mont gonmery curves, or as twi sted Edwards curves. These curve nodels
are related, as foll ows.

D.1. Mapping between Twi sted Edwards Curves and Mont gonery Curves

One can map points of the Montgonery curve M{A B} to points of the
tw sted Edwards curve E {a,d}, where a:=(A+2)/B and d: =(A-2)/B and,
conversely, map points of the tw sted Edwards curve E {a,d} to points
of the Montgonmery curve M{A B}, where A =2*(a+d)/(a-d) and where
B:=4/(a-d). For tw sted Edwards curves we consider (i.e., those
where a is a square in G-(q), whereas d is not), this defines a one-
t 0-one correspondence, which - in fact - is an isonorphi sm between
M{A B} and E {a,d}, thereby showing that, e.g., the discrete

| ogarithm problemin either curve nodel is equally hard.

For the Montgomery curves and tw sted Edwards curves we consider, the

mappi ng fromM{A B} to E {a,d} is defined by mapping the point at
infinity Oand the point (0, 0) of order two of M{A B} to,
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respectively, the point (0, 1) and the point (0, -1) of order two of
E {a,d}, while mapping each other point (u, v) of M{A B} to the
point (x,y):=(u/v,(u-1)/(u+l)) of E {a,d}. (Note that this is well-
defined, since neither (A-2)/B nor A*2-4 are squares in G-(q), so

M {A B} has a single point of order two and no affine points (u,vV)
with u=-1.) The inverse mapping fromE {a,d} to M{A B} is defined
by mapping the point (0, 1) and the point (0O, -1) of order two of

E {a,d} to, respectively, the point at infinity O and the point (O,
0) of order two of M{A B}, while each other point (x, y) of E {a,d}
is mapped to the point (u,v):=((1+y)/(1-y), (1+y)/((1-y)*x)) of

M{A B}. (Note that this is well-defined, since for points (x,y) of
E {a,d}, x=0 only if y=(+/-)1.)

| npl ement ati ons may take advantage of this mapping to carry out
elliptic curve group operations originally defined for a tw sted
Edwar ds curve on the correspondi ng Montgonmery curve, or Vice-versa,
and translating the result back to the original curve, thereby
potentially allow ng code reuse.

D. 2. Mapping between Montgonery Curves and Weierstrass Curves

One can map points of the Montgonery curve M{A B} to points of the
Wei erstrass curve W{a, b}, where a:=(3-A"2)/(3*B*2) and

b: =(2*A"3-9*A)/ (27*B"3). This defines a one-to-one correspondence,

which - in fact - is an isonorphismbetween M{A B} and W{a, b},

t hereby showing that, e.g., the discrete |ogarithm problemin either
curve nodel is equally hard.

The mapping fromM{A B} to W{a,b} is defined by mappi ng the point
at infinity Oof M{A B} to the point at infinity Oof W{a,b}, while
mappi ng each other point (u,v) of M{A B} to the point

(X Y):=((u+A/3)/B,v/B) of W{a,b}.

Note that not all Wierstrass curves can be mapped to Mont gomery
curves, since the latter have a point of order two and the forner may
not. In particular, if a Wierstrass curve has prine order, such as
is the case with the so-called N ST prine curves, this inverse
mappi ng i s not defined.

If the Weierstrass curve W{a, b} has a point (alpha,0) of order two
and c:=a+3*(al pha)*2 is a square in G-(qg), one can map points of this
curve to points of the Montgonery curve M{A B}, where A =3*al pha/
gamma and B: =1/ gamma and where gamma i s any square root of c. In
this case, the mapping fromW{a,b} to M{A B} is defined by mapping
the point at infinity Oof W{a,b} to the point at infinity O of

M {A B}, while napping each other point (X Y) of W{a,b} to the point
(u,v):=((X-al pha)/ gamma, Y/ gamma) of M{A B}. As before, this defines
a one-to-one correspondence, which - in fact - is an isonorphi sm
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between W{a,b} and M{A B}. It is easy to see that the mapping from
W{a,b} to M{A B} and that fromM{A B} to W{a,b} (if defined) are
each other’s inverse.

Thi s mapping can be used to inplenent elliptic curve group operations
originally defined for a tw sted Edwards curve or for a Mntgonery
curve using group operations for the corresponding elliptic curve in
short-Wierstrass formand translating the result back to the
original curve, thereby potentially allow ng code reuse.

Note that inplenentations for elliptic curves with short-Wierstrass
formthat hard-code the donain paraneter a to a= -3 (which value is
known to allow nore efficient inplenmentations) cannot always be used
this way, since the curve W{a,b} resulting froman i sonorphic
mappi ng cannot al ways be expressed as a Wierstrass curve with a=-3
via a coordinate transformation. For nore details, see Appendi x F.

D.3. Mapping between Tw sted Edwards Curves and Wi erstrass Curves

One can map points of the twi sted Edwards curve E {a,d} to points of
the Weierstrass curve W{a, b}, via function conposition, where one
uses the isonorphic nmappi ng between tw sted Edwards curves and

Mont gonery curves of Appendix D.1 and the one between Montgonery and
Wei erstrass curves of Appendi x D.2. Cbviously, one can use function
conposition (now using the respective inverses - if these exist) to
realize the inverse of this mapping.

Appendi x E. Curve25519 and Cousi ns

This section introduces curves related to Curve25519 and expl ai ns
their rel ationships.

E.1. Curve Definition and Alternative Representations

The el liptic curve Curve25519 is the Montgonery curve M {A B} defined
over the prine field GF(p), with p:=2~{255}-19, where A =486662 and
B:=1. This curve has order h*n, where h=8 and where n is a prine
nunber. For this curve, A*2-4 is not a square in GF(p), whereas A+2
is. The quadratic twist of this curve has order hl*nl, where hl=4
and where nl is a prine nunber. For this curve, the base point is
the point (GQu, Gv), where GQu=9 and where Gv is an odd integer in the
interval [0, p-1].

This curve has the sane group structure as (is "isonorphic" to) the
tw sted Edwards curve E {a,d} defined over G-(p), wWith as base point
the point (&, Gy), where paraneters are as specified in

Appendi x E.3. This curve is denoted as Edwards25519. For this
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curve, the paraneter a is a square in G-(p), whereas d is not, so the
group laws of Appendix C. 3 apply.

The curve is also isonorphic to the elliptic curve W{a,b} in short-
Wei erstrass formdefined over G-(p), with as base point the point
(GX, GY), where paraneters are as specified in Appendix E.3. This
curve is denoted as Wi 25519. For this curve, the paranmeter b is a
square in G-(p). (For future reference, we note that this curve has
no affine points with x-coordinate -1.)

E.2. Switching between Alternative Representations

Each affine point (u, v) of Curve25519 corresponds to the point (X
Y):=(u + A/3, v) of Wi 25519, while the point at infinity of
Curve25519 corresponds to the point at infinity of Wi 25519. (Here,
we used the mappi ngs of Appendix D.2 and that B=1.) Under this

mappi ng, the base point (Gu, Gv) of Curve25519 corresponds to the
base point (GX, GY) of Wei25519. The inverse mappi ng maps the affine
point (X, Y) of Wei25519 to (u, v):=(X - A3, Y) of Curve25519, while
mappi ng the point at infinity of Wi 25519 to the point at infinity of
Curve25519. Note that this mapping involves a sinple shift of the
first coordinate and can be inplenented via integer-only arithmetic
as a shift of delta for the isonorphic mapping and a shift of -delta
for its inverse, where delta:=(ptA)/3 is the integer defined by

delta 19298681539552699237261830834781317975544997444273427339909597
334652188435537

(=0Ox2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaad2451).

(Note that, depending on the inplenentation details of the field
arithnetic, one nmay have to shift the result by +p or -p if this
integer is not in the interval [O,p-1].)

The curve Edwards25519 is isonorphic to the curve Curve25519, where

t he base point (Gu, Gv) of Curve25519 corresponds to the base point
(Gx, Gy) of Edwards25519 and where the point at infinity and the point
(0,0) of order two of Curve25519 correspond to, respectively, the
point (0, 1) and the point (0, -1) of order two of Edwards25519 and
where each other point (u, v) of Curve25519 corresponds to the point
(c*u/v, (u-1)/(u+l)) of Edwards25519, where c is the elenment of G-(p)
defined by

c sqrt(-(A+2)/B)

51042569399160536130206135233146329284152202253034631822681833788
666877215207
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(=0x70d9120b Of 5f f 944 2d84f 723 fc03b081 3a5e2c2e b482e57d
3391f b55 00basle7?).

(Here, we used the mapping of Appendix D.1 and normalized this using
t he mappi ng of Appendix F.1 (where the elenent s of that appendix is
set to ¢ above).) The inverse mappi ng from Edwards25519 to
Curve25519 is defined by mapping the point (0, 1) and the point (O,
-1) of order two of Edwards25519 to, respectively, the point at
infinity and the point (0,0) of order two of Curve25519 and havi ng
each other point (x, y) of Edwards25519 correspond to the point ((1 +
v/ (1 -vy), c*(1 +vy)/((1-y)*x)) of Curve25519.

The curve Edwards25519 is isonorphic to the Weierstrass curve

Wei 25519, where the base point (&, Gy) of Edwards25519 corresponds
to the base point (GX GY) of Wi 25519 and where the identity el ement
(0,1) and the point (0,-1) of order two of Edwards25519 correspond
to, respectively, the point at infinity Oand the point (A/3, 0) of
order two of Wi 25519 and where each other point (x, y) of

Edwar ds25519 corresponds to the point (X, Y):=((1+y)/(1-y)+A 3,
c*(1+y)/((1-y)*x)) of Wei 25519, where c was defined before. (Here,
we used the mapping of Appendix D.3.) The inverse mapping from

Wei 25519 to Edwards25519 is defined by nmapping the point at infinity
O and the point (A/3, 0) of order two of Wi 25519 to, respectively,
the identity element (0,1) and the point (0,-1) of order two of
Edwar ds25519 and havi ng each other point (X Y) of Wi25519
correspond to the point (c*(X-A/3)/Y, (XA 3-1)/(X-A 3+1)) of

Edwar ds25519.

Note that these mappings can be easily realized if points are
represented in projective coordinates, using a few field

mul tiplications only, thus allow ng sw tching between alternative
curve representations with negligible relative increnmental cost.

E.3. Domain Paraneters
The paraneters of the Montgonery curve and the correspondi ng
i sonor phic curves in tw sted Edwards curve and short-Wierstrass form
are as indicated below. Here, the domain paraneters of the
Mont gonmery curve Curve25519 and of the tw sted Edwards curve
Edwar ds25519 are as specified in [ RFC7748]; the donmin paraneters of
Wei 25519 are "new'
General paraneters (for all curve nodel s):
p 27{255}-19

(=Ox7fffffff feffffff FEEFEEFF FECEFAEE FRFEFAFT FEFAFIFAS
ffffffff ffffffed)
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h1

nl

8

72370055773322622139731865630429942408571163593799076060019509382
85454250989

(=2"{ 252} + Ox14def9de a2f 79cd6 5812631a 5cf 5d3ed)
4

14474011154664524427946373126085988481603263447650325797860494125
407373907997

(=27{ 253} - O0x29bdf 3bd 45ef 39ac b024c634 b9eba7e3)

Mont gonery curve-specific parameters (for Curve25519):

A

B
Qu
Gv

486662 (=0x076d06)
1 (=0x01)
9 (=0x09)

14781619447589544791020593568409986887264606134616475288964881837
755586237401

(=0x20ael9al b8a086b4 eOledd2c 7748d1l4c 923d4d7e 6d7c61b2
29e9cbha2 7eced3d9)

Tw st ed Edwards curve-specific paraneters (for Edwards25519):

Strui k

-1 (-0x01)
- 121665/ 121666 = - (A-2)/ (A+2)

(=370957059346694393431380835087545651895421138798432190163887855
33085940283555)

(=0x52036cee 2b6ffe73 8cc74079 7779e898 00700a4d 4141d8ab
75eb4dca 135978a3)

15112221349535400772501151409588531511454012693041857206046113283
949847762202

(=0x216936d3 cd6e53fe cOad4e231 fddédc5c 692cc760 9525a7b2
c9562d60 8f 25d51a)

4/ 5
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(=463168356949264781694283940034751631413079938662562256157830336
03165251855960)

(=0x66666666 66666666 66666666 66666666 66666666 66666666
66666666 66666658)

Wei erstrass curve-specific paraneters (for Wi 25519):

a 19298681539552699237261830834781317975544997444273427339909597334
573241639236

(=Ox2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaa98 4914al44)

b 55751746669818908907645289078257140818241103727901012315294400837
956729358436

(=0x7b425ed0 97b425ed 097b425e d097b425 ed097b42 5ed097b4
260b5e9c 7710c864)

GX 19298681539552699237261830834781317975544997444273427339909597334
652188435546

(=Ox2aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
aaaaaaaa aaad245a)

GY 14781619447589544791020593568409986887264606134616475288964881837
755586237401

(=0x20ael9al b8al086b4 eOledd2c 7748dl4c 923d4d7e 6d7c61b2
29e9cbha2 7eced3d9)

Appendi x F. Further Mappi ngs

The non-binary curves specified in Appendix A are expressed in
different curve nodels, viz. as curves in short-Wierstrass form as
Mont gonmery curves, or as tw sted Edwards curves. |In Appendix D we

al ready described rel ati onshi ps between these various curve nodel s.
Furt her mappi ngs exist between elliptic curves within the sane curve
nodel . These can be exploited to force sone of the domain paraneters
to specific values that allow for a nore efficient inplenentation of
t he addition formul ae.

F.1. |sonorphic Mapping between Tw sted Edwards Curves
One can map points of the twi sted Edwards curve E {a,d} to points of

the twi sted Edwards curve E {a',d }, where a:=a *s"2 and d: =d’ *s"2
for some nonzero elenent s of G-(q). This defines a one-to-one
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correspondence, which - in fact - is an isonorphi smbetween E {a, d}
and E {a ,d }.

The mapping fromE {a,d} to E{a’,d } is defined by mapping the point
(x,y) of E{a,d} to the point (x, y'):=(s*x, y) of E{a ,d }. The
inverse mapping fromE {a ,d } to E{a,d} is defined by mapping the
point (x, y') of E{a ,d } to the point (x, y):=(x"/s, y') of

E {a, d}.

| npl emrent ati ons may take advantage of this mapping to carry out
elliptic curve group operations originally defined for a tw sted
Edwards curve with generic domain paraneters a and d on a

correspondi ng i sonorphic tw sted Edwards curve with domai n paranmeters
a’ and d that have a nore special formand that are known to allow
for nore efficient inplenmentations of addition |aws and transl ating
the result back to the original curve. |In particular, it is known
that such efficiency inprovenents exist if a :=(+/-)1 (see

[t Ed- Formul as]) .

F. 2. |sonorphic Mappi ng between Mntgonmery Curves

One can map points of the Montgonery curve M{A B} to points of the
Mont gonery curve M{A ,B}, where A.=A" and B: =B *s"2 for sone
nonzero element s of GF(q). This defines a one-to-one
correspondence, which - in fact - is an isonorphi smbetween M{A B}
and M{A ,B}.

The mapping fromM{A B} to M{A ,B} is defined by mapping the point
at infinity Oof M{A B} to the point at infinity Oof M{A ,B},
whi | e mappi ng each other point (u,v) of M{A B} to the point (u',
v'):=(u, s*v) of M{A ,B}. The inverse mapping fromM{A ,B} to
M{A B} is defined by mapping the point at infinity Oof M{A,B} to
the point at infinity Oof M{A B}, while mappi ng each ot her point
(u,v') of M{A,B} to the point (u,v):=(u,v'/s) of M{A B}.

One can al so map points of the Montgonmery curve M{A B} to points of
t he Montgonery curve M{A ,B}, where A :=-A and B :=-B. This
defines a one-to-one correspondence, which - in fact - is an

i sonor phi sm between M {A B} and M{A ,B}.

In this case, the mapping fromM{A B} to M{A ,B } is defined by
mappi ng the point at infinity Oof M{A B} to the point at infinity O
of M{A ,B}, while mappi ng each other point (u,v) of M{A B} to the
point (u,v'):=(-u,v) of M{A,B}. The inverse mapping from

M{A ,B} to M{A B} is defined by nmapping the point at infinity O of
M{A ,B} to the point at infinity O of M{A B}, while mapping each
ot her point (u,v') of M{A,B} to the point (u,v):=(-u,v ) of

M { A B}.
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I npl erent ati ons may take advantage of these mappings to carry out
elliptic curve groups operations originally defined for a Mntgonery
curve with generic domain paraneters A and B on a correspondi ng

i sonor phi ¢ Montgomery curve with domain paraneters A and B that
have a nore special formand that are known to allow for nore
efficient inplenmentations of addition laws and translating the result
back to the original curve. |In particular, it is known that such
efficiency inprovenents exist if B assunmes a snmall absol ute val ue,
such as B :=(+/-)1. (see [Mont-Ladder]).

F. 3. Isonorphic Mappi ng between Wi erstrass Curves

One can map points of the Wierstrass curve W{a, b} to points of the
Wei erstrass curve W{a',b'}, where a :=a*s"4 and b’:=b*s”6 for sone
nonzero elenent s of GF(q). This defines a one-to-one
correspondence, which - in fact - is an isonorphi smbetween W{a, b}
and W{a ,b'}.

The mapping fromW{a,b} to W{a’,b'} is defined by mapping the point
at infinity Oof W{a,b} to the point at infinity Oof W{a ,b},
whi | e mappi ng each other point (X, Y) of W{a,b} to the point
(X,Y):=(X*s"2, Y*s"3) of W{a',b’}. The inverse mapping from

W{a ,b'} to W{a,b} is defined by mapping the point at infinity O of
W{a' ,b’'} to the point at infinity O of W{a, b}, while mapping each
other point (X, Y ) of W{a ,b’'} to the point (X Y):=(X/s"2,Y [s"3)
of W{a, b}.

| npl emrent ati ons may take advantage of this mapping to carry out
elliptic curve group operations originally defined for a Wi erstrass
curve with generic domain paraneters a and b on a correspondi ng

i sonmor phic Weierstrass curve wth domain paranmeter a' and b’ that
have a nore special formand that are known to allow for nore
efficient inplenmentations of addition laws and translating the result
back to the original curve. |In particular, it is known that such
efficiency inprovenents exist if a’=-3 (nod p), where p is the
characteristic of GF(qg), and one uses so-call ed Jacobi an coordi nates
with a particular projective version of the addition | aws of
Appendix C.1. Wile not all Wierstrass curves can be put into this
form all traditional N ST curves have donmain paraneter a=-3, while
al | Brainpool curves [RFC5639] are isonorphic to a Wierstrass curve
of this formvia the above mappi ng.

Note that inplenentations for elliptic curves with short-Wierstrass
formthat hard-code the domain paraneter a to a= -3 cannot al ways be
used this way, since the curve W{a, b} cannot always be expressed in
ternms of a Weierstrass curve with a’=-3 via a coordi nate
transformation: this only holds if a’'/ais a fourth power in G-(Q)
(see Section 3.1.5 of [GECC]). However, even in this case, one can
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still express the curve W{a,b} as a Wierstrass curve with a snal
domai n paraneter value a, thereby still allowing a nore efficient
i npl enentation than with a general domai n paraneter val ue a.

F. 4. |sogenous Mappi ng between Wi erstrass Curves

One can still map points of the Wierstrass curve W{a, b} to points
of the Weierstrass curve W{a',b’}, where a’:=-3 (nod p) and where p
is the characteristic of G-(q), even if a'/a is not a fourth power in
G-(q). In that case, this nappping cannot be an isonorphism (see
Appendi x F.3). Instead, the mapping is a so-called isogeny (or
hormonor phism. Since nost elliptic curve operations process points
of prime order or use so-called "co-factor nultiplication", in
practice the resulting mapping has simlar properties as an

i sonorphism In particular, one can still take advantage of this
mappi ng to carry out elliptic curve group operations originally
defined for a Weierstrass curve with domain paraneter a unequal to -3
(nod p) on a correspondi ng i sogenous Wi erstrass curve with domain
paranmeter a’'=-3 (nod p) and translating the result back to the
original curve.

In this case, the mapping fromW{a,b} to W{a’,b’} is defined by
mappi ng the point at infinity Oof W{a,b} to the point at infinity O
of W{a',b}, while mappi ng each other point (X Y) of W{a,b} to the
point (X ,Y ):=(u(X)/wX)"*2, Y*v(X)/w(X)"3) of W{a' ,b'}. Here, u(X
v(X), and w(X) are polynomals in X that depend on the isogeny in
guestion, as do donmmin paraneters a and b’. The inverse mapping
fromW{a ,b'} to W{a,b} is again an isogeny (called the dua

i sogeny) and defined by mapping the point at infinity Oof W{a ,b'}
to the point at infinity Oof W{a, b}, while mapping each other point
(X, Y) of W{a’,b'} to the point

(X, Y):=(u (X)/w (X)"2,Y*v' (X )/w (X )"3) of W{a, b}, where --
again -- v (X), v (X), and w (X ) are polynomals in X that depend
on the isogeny in question. These mappi ngs have the property that
their conposition is not the identity mapping (as was the case with

t he i sonor phi ¢ mappi ngs di scussed in Appendix F.3), but rather a
fixed multiple hereof: if this multiple is | then the isogeny is

call ed an isogeny of degree | (or |-isogeny) and u, v, and w (and,
simlarly, u, v', and w) are polynom als of degrees |, 3*(l-1)/2,
and (I-1)/2, respectively. Note that an isonorphismis sinply an

i sogeny of degree | =1. Details of howto determ ne isogenies are out
of the scope of this docunent. The above fornulas assune that the

i sogeny has odd degree (i.e., | is odd); detailed fornulas for even-
degree isogenies are simlar, but out of scope.

| npl ement ati ons may take advantage of this mapping to carry out

elliptic curve group operations originally defined for a Wi erstrass
curve with a generic domain paraneter a on a correspondi ng i sogenous
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Wei erstrass curve with domain paraneter a’'=-3 (nod p), where one can
use so-call ed Jacobian coordinates with a particular projective
version of the addition | aws of Appendix C. 1. Since all traditional
NI ST curves have domai n paraneter a=-3, while all Brainpool curves

[ RFC5639] are isonmorphic to a Weierstrass curve of this form this
al l ows taking advantage of existing inplenentations for these curves
that may have a hardcoded a=-3 (nod p) domain paraneter, provided one
switches back and forth to this curve formusing the isogenous
mappi ng i n questi on.

Not e that isogenous mappi ngs can be easily realized using
representations in projective coordinates and involves roughly 3*I
finite field multiplications, thus allow ng sw tching between
alternative representations at relatively | owincremental cost
conpared to that of elliptic curve scalar multiplications (provided
the isogeny has | ow degree I). Note, however, that this does require
storage of the polynom al coefficients of the isogeny and dual

i sogeny involved. This illustrates that |ow degree isogenies are to
be preferred, since an |-isogeny (usually) requires storing roughly
6*l elements of G-(g). While there are many isogenies, we therefore
only consider those with the desired property with | owest possible
degr ee.

Appendi x G Further Cousins of Curve25519

This section introduces sonme further curves related to Curve25519 and
expl ains their relationshi ps.

G 1. Further Alternative Representations

The Weierstrass curve Wi 25519 is isonorphic to the Wierstrass curve
Wei 25519. 2 defined over GF(p), with as base point the pair (&X &Y),
and i sogenous to the Wierstrass curve Wi 25519. -3 defined over

G-(p), with as base point the pair (G3X, G3Y), where paraneters are
as specified in Appendix G 3 and where the rel ated mappi ngs are as
specified in Appendi x G 2.

G 2. Further Swi tching
Each affine point (X, Y) of Wi 25519 corresponds to the point (X,
Y ):=(X*s"2, Y*s”"3) of Wi 25519.2, where s is the el enent of GF(p)
defi ned by

] 20343593038935618591794247374137143598394058341193943326473831977
39407761440

(=0x047f 6814 6d568b44 7e4552ea ab5ed633d 02d62964 a2b0al20
5e7941e9 375de020),
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while the point at infinity of Wi 25519 corresponds to the point at
infinity of Wei25519.2. (Here, we used the nmappi ng of Appendi x F.3.)
Under this mapping, the base point (GX, GY) of Wei 25519 corresponds
to the base point (&X &Y) of Wi 25519.2. The inverse nappi ng maps
the affine point (X, Y ) of Wi25519.2 to (X, Y):=(X/s"2,Y [/s"3) of
Wei 25519, while mapping the point at infinity O of Wi 25519.2 to the
point at infinity O of Wi 25519. Note that this mapping (and its

i nverse) involves a nodular nultiplication of both coordinates with
fixed constants s"2 and s”3 (respectively, 1/s"2 and 1/s”3), which
can be preconputed.

Each affine point (X Y) of Wi 25519 corresponds to the point

(X ,Y):=(X1*t"2,Y1*t~3) of Wei 25519.-3, where

(XL, Y) =(u(X)/wm(X)"2, Y*V(X)/ W X)*3), where u, v, and w are the
polynom als with coefficients in Ge(p) as defined in Appendix G 4.1
and where t is the elenment of G-(p) defined by

t 35728133398289175649586938605660542688691615699169662967154525084
644181596229

(=0Ox4ef d6829 88ff 8526 e189f 712 5999550c e9ef 729b edla7015
73blbab8 8bf cd845),

while the point at infinity of Wi 25519 corresponds to the point at
infinity of Wi 25519.-3. (Here, we used the isogenous nmappi ng of
Appendi x F.4.) Under this isogenous mapping, the base point (GX GY)
of Wei 25519 corresponds to the base point (G3X G3Y) of Wi 25519. -3.
The dual isogeny maps the affine point (X ,Y ) of Wi25519.-3 to the
affine point (X Y):=(u (X1)/w (X1)"2,Y1*v' (X1)/w (X1)"3) of Wei 25519,
where (X1,Y1l)=(X/t"2,Y /t"3) and where u', v', and w are the

pol ynom als with coefficients in GF(p) as defined in Appendi x G 4. 2,
whi |l e mapping the point at infinity O of Wi 25519.-3 to the point at
infinity O of Wi 25519. Under this dual isogenous mapping, the base
poi nt (G3X, G3Y) of Wei25519.-3 corresponds to a nultiple of the base
poi nt (GX, GY) of Wi 25519, where this multiple is | =47 (the degree
of the isogeny; see the description in Appendix F.4). Note that this
i sogenous map (and its dual) primarily involves the eval uation of
three fixed polynom als involving the x-coordi nate, which takes
roughly 140 nodul ar nultiplications (or |less than 5-10%rel ative

i ncrenmental cost conpared to the cost of an elliptic curve scalar

mul tiplication).

G 3. Further Domain Paraneters
The paraneters of the Weierstrass curve with a=2 that is isonorphic

with Wei 25519 and the paraneters of the Wierstrass curve with a=-3
that is isogenous with Wi 25519 are as indicated below. Both domain
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paraneter sets can be exploited directly to derive nore efficient
poi nt addition fornulae, should an inplenentation facilitate this.
General paraneters: same as for Wi 25519 (see Appendi x E. 3)

Wei erstrass curve-specific paraneters (for Wi 25519.2, i.e., with
a=2):

a 2 (=0x02)

b 12102640281269758552371076649779977768474709596484288167752775713
178787220689

(=0Oxlaclda05 b55bc146 33bd39e4 7f94302e f19843dc f669916f
6a5df d01 65538cdl)

&X 10770553138368400518417020196796161136792368198326337823149502681
097436401658

(=0x17cfeac3 78aed661 318e8634 582275b6 d9ad4def 072eal93
5ee3c4e8 7a940ff a)

&Y 54430575861508405653098668984457528616807103332502577521161439773
88639873869

(=0x0c08a952 c55dfad6 2c4f 13f1 a8f 68dca dc5c¢331d 297a37b6
f0d7f dcc 51el6b4d)

Wei erstrass curve-specific paraneters (for Wi 25519.-3, i.e., wth
a=-3):

a -3

(=Ox7fffffff fEFeffff fEFEFEFF FEFEAFEF FEFFAAFF FEFFFFAFAS
ffffffff ffffffea)

b 29689592517550930188872794512874050362622433571298029721775200646
451501277098

(=0x41a3b6bf c668778e be2954a4 bldf 36d1l 485ecefl ea614295
796e1022 40891f aa)

G3X 53837179229940872434942723257480777370451127212339198133697207846
219400243292

(=0x7706c37b 5a84128a 3884a5d7 1811f 1b5 5da3230f fbl7a8ab
0b32e48d 31a6685c)
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GY 69548073091100184414402055529279970392514867422855141773070804184

G 4.

60388229929

(=0x0f 60480c 7a5c0ell 40340adc 79d6a2bf 0Ocb57ad0 49d025dc
38d80c77 985f 0329)

| sogeny Details

The isogeny and dual isogeny are both isogenies with degree |=47.

Bot
V',
in
in

h are specified by a triple of polynomals u, v, and w (resp. u’,
and w ) of degree 47, 69, and 23, respectively, wth coefficients
GF(p). The coeffients of each of these polynomals are specified

Appendi x G 4.1 (for the isogeny) and in Appendix G 4.2 (for the

dual isogeny). For each polynom al in variable x, the coefficients
are tabul ated as the sequence of coefficients of x*0, x*1, x"2, ...,

in
G 4. 1.
G 4. 1.

0

10
11
12

13

Strui k

hexadeci mal format.
| sogeny Paraneters

1. Coefficients of u(x)

0x670ed14828b6f 1791ceb3a9ccOedf e1l27dee8729c5a72ddf 77bblabaebbbale8
0x1135ca8bd5383ch3545402c8bce2ced14b45¢c29b241e4751b035f 27524a9f 932
0x3223806f f 5f 669c430ef d74df 8389f 058d180e2f cf f a5cdef 3eacecdd2c34771
Ox31b8f ecf 3f 17a819c228517f 6cd9814466c8c8bea2ef ccc47a29bf c14c364266
0x2541305c958c5a326f 44ef ad2bec284e7abee840f adb08f 2d994cd382f d8ce4d?2
Ox6e6f 9c5792f 3f f 497f 860f 44a9c469cec42bd711526b733e10915be5b2dbd8c6
0x3e9ad2e5f 594b9ce6b06d4565891d28albe8790000b396ef Obf 59215d6cabf de
0x278448895d236403bbc161347d19¢c913e7df 5f 372732a823ed807ee1d30206be
0x42f 9d171ea8dc2f 4ald4eadb6cc0ee54967175ecf e83a975137b753cb127¢35060
0x128e40ef a2d3cch51567e73bae91e7c31leac45700f al3ce5781chbe5ddc985648
0x450e5086c065430b496d88952dd2d5f 2¢5102bc27074d4d1e98bf a47413e0645
0x487ef 93da70df d44a4db8cb41542e33d1aa32237bdcal3a59b3celc59585f 253d
0x33d209270026b1d2db96ef b36cc2f a0a49bel307f 49689022eab1892b010b785

0x4732b5996a20ebc4d5¢c5e2375d3b6¢c4b700¢c681bd9904343a14a0555ef Oecd48
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0x64dc9e8272b9f 5c6ad3470db543238386f 42b18cb1c592cc6eaf 7893141b2107
Ox52bbacdlf 85c61lef 7eaf d8da27260f a2821f 7a961867ed449b283036508ac5c5
0x320447ed91210985e2c401cf e1a93db1379424cf 748f 92f d61lab5cc356bc89a2
0x23d23a49bbcdf 8cf 4c4ce8adf f 7dd87d1ad1970317686254d5b4d2ec050d019f
0x1601f ca063f Obbbf 15f 198b3c20e474c2170294f a981f 73365732d2372b40cd4
Ox7bf 3f 93840035e9688cf f f 402cee204a17c0de9779f c33503537dd78021bf 4c4
0x311998ce59f b7elcd6af 591ece3e84df cbh1c330chcf 28c0349e37b9581452853
Ox7aeb5edlacf d28a9add2216df ed34756575a19b16984c1f 3847b694326dad7f 99
0x704957e279244a5b107a6¢c57bd0ab9af e5227b7c0be2052cd3513772a40ef ee7
0x56b918b5a0c583ch763550f 8f 71481e57c13bdcef 2e5cf ¢8091d0821266f 233b
0x677073f ed43ab291e496f 798f bcf 217bac3f 014e35d0c2f a07f 041ae746a04d7
0x22225388e76f 9688c7d4053b50ba41d0d8b71a2f 21da8353d98472243ef 50170
0x66930b3df f dd3995a2502cef 790d78b091¢c875192d8074bb5d5639f 736400555
0x79eb677c5e36971e8d64d56ebc0dedb4e9b7dd2d7b01343ebbd4d358d376e490
0x48a204c2ca6d8636€9994842605bd648b91b637844e38d6c7dd707edce8256e2
0x0f b3529b0d4b9ce2d70760f 33e8ce997a58999718e9277caf 48623d27ae6a788
0x4352604bf f dOc7d7a9ed898a2c6e7cf 2512f f b89407271balf 2c2d0ead8cc5aa
0x6667697b29785f b6f Obd5e04d828991a5f e525370216f 347ec767a26e7aac936
0x09f c950b083c56dbd989badf 9887255e203c879f 123a7ch28901e50aeabd64dc
Ox41e51b51b5caadd1c15436bbf 37596a1d7288a5f 495d6b5blae66f 802942b31d
0x073b59f ec709aalcabd429e981c6284822a8b7b07620c831ab41f d31d5cf 7430
0x67e9b88e9albf bc2554107d67d814986f 1b09c3107a060cha21c019a2d5dc848
0x6881494a1066cal76c5e174713786040af f b4268b19d2abf 28ef 4293429f 89c1

Ox5f 4d30502f f 1elccd624e6f 506569454ab771869d7483e26af c09dealc5ccd3d
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11
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0x02a814cf c5859bca51e539c159955¢che729a58978b52329575d09bc6c3bf 97ad
0x1313c8aaae20d6f 4397f 0d8b19e52cf cdf 8d8el10f bal44aec1778f d10ddf 4e9c
0x7008d38f 434b98953a996d4cc79f cbef 9502411dcdf 92005f 725cea7ce82ad47
Ox5a74d1296aaaa245f f b848f 434531f a3ba9e5cb9098a7091d36¢c2777d4cf 5a13
0x4bd3b700606397083f 8038177bdaalac6edbba0447537582723cae0f d29341a9
0x573453f b2b093016f 3368356¢c786519d54ed05f 5372c01723b4da520597ec217
Ox77f 5c605bdb3a30d7d9c8840f ce38650910d4418eed707a212c8927f 41c2c812
0x16d6b9f 7f f 57ca32350057de1204cc6d69d4ef 1b255df ef 8080118e2f ef 6ace3
0x34e8595832a4021f 805744014c6b4f 7da7df 0d0329e8b6b4d44c8f adad6513b7
0x01

2. Coefficients of v(x)

OxO0f 9f 5eb7134e6f 8daf a30c45af a58d7bf c6d4e3ccbb5de87b562f d77403972b2
0x36c2dcd9e88f 0d2d517al15f c453a098bbbb5a05eb6e8da906f ae418ad4elal3f 7
0x0b40078302c24f a394a834880d5bf 46732calb4894172f b7f 775821276f 558b3
0x53dd8e2234573f 7f 3f 7df 11e90a7bdd7b75d807f 9712f 521d4f b18af 59aa5f 26
0x6d4d7bb08de9061988a8cf 6f f 3beb10e933d4d2f bb8872d256a38c74c8c2ceda
Ox71bf e5831b30e28cd0f bele9916ab2291c6beacc5af 08e2c9165¢c632e61dd2f 5
0x7c524f 4d17f f 2ee88463da012f c12a5b67d7f b5bd0ab59f 4bbf 162d76belc89c
0x758183d5e07878d3364e3f d4c863a5dclf e723f 48c4ab4273f c034f 5454d59a4
Oxleb4lef 2479444ecdccbc200f 64bde53f 434a02b6c3f 485d32f 14dab6aa7700el
0x1490f 3851f 016¢cc3cf 8ale3c16a53317253d232ed425297531b560d70770315¢
0x09bc43131964e46d905¢3489c9d465c3abbd26eab9371c10e429b36d4bh86469c
Ox5f 27¢c173d94c7a413a288348d3f c88daalbcf 5af 8f 436a47262050f 240e9be3b

0x1d20010ec741aaa393¢cd19f 0133b35f 067adab0d105babe75f e45¢c8ba2732ceb
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0x01b3c669ae49b86be2f 0c946a9f f 6c48e44740d7d9804146915747¢c3c025996a
0x24c6090f 79ec13e3ae454d8f Of 98e0c30a8938180595f 79602f 2ba013b3c10db
0x4650c5b5648c6c43ac75a2042048c699e44437929268661726e7182a31b1532f
0x0957a835f b8bac3360b5008790e4c1f 3389589ba74c8e8bf 648b856ba7f 22bas
Ox1cd1300bc534880f 95¢7885d8df 04a82bd54ed3e904b0749e0e3f 8cb3240c7c7
0x760b486e0d3c6ee0833b34b64b7ebc846055d4d1eObeeb6aedd5132399adalea
0x1c666846c63965ef 7edf 519d6ada738f 2b676ae38f f 1f 4621533373931b3220e
0x365055118b38d4bc0df 86648044af f ea2ef 33e9a392ad336444e7d15e45585d1
0x736487bde4b555abf ccd3ea7ddcda98eda0d7c879664117dee906a88bc551194
0x70de05ab9520222a37c7a84c6leedf f 71cb50c5f 6647f c2a5d6e0f f 2305cea37
0x59053f 6¢cdf 6517ab3f e4bd9c9271d1892f 8cf 353d8041b98409e1e341a01f 8b5
0x375db54ed12f e8df 9a198ea40200e812c2660b7022681d7932d89f af e7c6e88d
0x2a070c31dlcla064daf 56c79a044bd1cd6d13f 1ddbOf f 039b03a6469aaaled77
0x41482351e7f 69a756a5a2c0b3f a0681c03c550341d0calf 76c5b394db9d2de8d
0x747ac1109c9e9368d94a302ch5a1d23f cc7f Of d8a574ef b7ddcaa738297c407a
0x45682f 1f 2aab6358247e364834e€2181ad0448bb815c587675f b2f ee5a2119064
0x148c5bf 44870df d307317f 0a0e4a8c163940beeld2f 01455a2e658aa92c13620
Ox6add1361e56f f a2d2f bbddba284b35be5845aec8069f c28af 009d53290a705ce
0x6631614c617400dc00f 2¢55357f 67a94268e7b5369b02e55d5db46c935be3af 5
Ox17cffb496c64bb89d91c8c082f 4c288c3c87f eabd6b08591f €5a92216c094637
0x648f f 88155969f 54c¢955a1834ad227b93062bb191170dd8c4d759f 79ad5da250
0x73e50900b89e5f 295052b97f 9d0c9edbOf c7d97b7f a5e3cf eef e33dd6a9ch223
Ox6af cb2f 2f f e6c08508477aa4956cbhd3dc864257f 5059685adf 2c68d4f 2338f 00

0x372f d49701954c1b8f 00926a8chb4b157d4165b75d53f a0476716554bf 101b74c
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0x0334ed41325f 3724f f 8bechbf 2b3443f ea6d30f a543d1cal3188aceb2bdaf 5f 4e
0x70e629c95a94e8e1b3974acbh25e18ba42f 8d5991786f 0931f 650c283adf e82f d
0x738a625f 4c62d3d645f 1274e09ab344e72d441f 3c0e82989d3e21e19212f 23f 3
0x7093737294b29f 21522f 5664a9941¢c9b476f 75d443b647bd2c777040bcd12a6a
0x0a996bad5863d821cchb8b89f a329ddbe5317a46bchb32552db396bea933765436
0x2da237e3741b75dd0264836e7ef 634f cObc36ab187ebc790591a77¢c257b06f 53
0x1902f 3daa86f a4f 430b57212924f dc9e40f 09e809f 3991a0b3al0ab186¢c50ee5
Ox12baf f ec1bf 20c921af d3cdf 67a7f 1d87c00d5326a3e5c83841593c214dadcbl
0x6460f 5a68123ch9e7bc1289cd5023c0c9ccd2d98eea24484f b3825b59dcd09aa
0x2c7d63a868f f c9f Of d034f 821d84736c5bc33325ce98aba5f 0d95f ef 6f 230ec8
0x756e0063349a702db7406984c285a9b6bf ba48177950d4361d8ef a77408dc860
0x037f 3e30032b21e0279738e0a2b689625447831a2ccf 15c638672da9aa7255ae
0x1107c0dbel5d6ca9e790768317a40bcf 23c80f 1841f 03ca79dd3e3ef 4ealae30
Ox61ff 7f 25721d6206041¢c59a788316b09e05135a2aad94d539c65daa68b302cc?2
0x5dbf e346cbd0d61b9a3b5c42ec0518d3ae81cabcc32245060d7b0cd982b8d071
0x4b6595e8501e9ec3e75f 46107d2f d76511764ef cal79f 69196eb45c0aa6f ade3
Ox72d17a5aa7bd8a2540aa9b02d9605f 2a714f 44abf b4c35d518b7abc39b477870
0x658d8c134bac37729ec40d27d50b637201abbf 1ab4157316358953548c49cf 22
0x36ac53b911858lace574d5a08f 9647e6a916f 92dda684a4dbc405e2646b0243f
0x1917a98f 387d1e323e84a0f 02d53307b1dd949e1a27b0de14514f 89d9cOef 4b6
0x21573434f de7ce56e8777c79539479441942dba535ade8ech77763f 7eb05d797
0x0eObf 482dc40884719bea5503422b603f 3a8edb582f 52838caabeaab6eeac7ef
0x3b0471eb53bd83e14f bc13928f €1691820349a963be8f 7€9815848a53d03f 5eb

0x1e92cb067b24a729c42d3abb7a1179¢c577970f 0ab3e6b0ce8d66c5b8f 7001262
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Ox74eaB885clebed6f 74964262402432ef 184c42884f ceb2f 8dba3a9d67a1344dd7
0x433ebce2ce9b0dc314425cf c2b234614d3c34f 2c9dadf f f 4f dddd1ce242d035b
0x33ac69e6be858dde7b83a9f f 6f 11de443128b39cec6e410e8d3b570e405f f 896
Ox0dab71e2ae94e6530a501ed8cf 3df 26731dd1d41cd81578341el2dca3cb71aa3
0x537f 58d52d18ce5b1d5a6bd3a420e796e64173491ad43dd4d1083a7dcc7dd201
0x49c2f 6af a93f dcc4e0f 8128a8b06da4c75049bel4edf 3e103821ab604c60f 8ae
0x10a333eabd6135aeaa3f 5f 5f 7e73d102e4f d7e4bf 0902f c55b00da235f alad08
0x0f 5¢86044bf 6032f 5102e601f 2a0f 73c7bce9384bedd120f 3e72d78484179d9c
0x01

3. Coefficients of w(x)
0x3da24d42421264f 30939f f 00203880f 2b017eb3f ecf 8933ae61e18df 8c8ballb
0x0457f 20bc393cdc9a66848cel74e2f a4ld77e6dbae05a317alf b6e3ae78760f 8
Ox7f 608a2285¢c480d5¢c9592¢435431f ae94695beef 79d770bb6d029c1d10a53295
0x3832accc520a485100a0a1695792465142a5572bed1b2e50elf 8f 662ac7289bb
0x2df 1b0559e31b328eb34beedd5e537c3f 4d7b9bef b0749f 75d6d0d866d26f baa
0x25396820381d04015a9f 655ddd41c74303ded05d54a7750e2f 58006659adda28
Ox6f a070a70ca2bc6d4d0795f b28d4990b2cc80cd72d48b603a8ac8c8268bef 6a6
0x27f 488578357388b20f bc7503328e1d10de602b082b3c7b8ceb33c29f ea7al0d2
0x15776851a7cabcf e84c632118306915c0c15¢c75068a47021968c7438d46076e6
0x101565b08a9af 015¢c172f b194b940a4df 25c4f b1d85f 72d153ef c79131d45e8f
0x196DbO0f f bf 92f 3229f ealdac0d74591b905ccaab6b83f 905ee813ee8449f 8a62c
0x01f 55784691719f 765f 04ee9051ec95d5deb42ae45405a9d87833855a6d95a94
0x628858f 79cca86305739d084d365d5a9e56e51a4485d253ae3f 2e4a379f a8af f

Ox4a842dcd943a80dle6eldab3622a8c4d390dal592d1e56d1c14c4d3f 72dd01a5
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O0xO0f 3bf c9cb17a1125f 94766a4097d0f 1018963bcllcb7bc0c7a1d94d65e282477
Ox1c4bd70488c4882846500691f a7543b7ef 694446d9c3e3b4707ea2c99383e53c
0x2d7017e47b24b89b0528932c4ade43f 09091b91db0072e6ebdc5e777cbh215e35
0x781d69243b6c86f 59416f 91f 7decaca93eab9cdc36a184191810c56ed85e0f dc
Ox5f 20526f 4177357da40a18da054731d442ad2a5a4727322ba8ed10d32eca24f b
0x33e4cab64ed8a00d8012104f e8f 928e6173c428ef f 95bbbe569ead46126a4f 3cd
0x050555b6f 07€308d33776922b6566829d122e19b25b7bbacbb0a4bla7dc40192
0x533f a4bf 1e2a2aae2f 979065f dbb5b667ede2f 85543f ddbbal46aal3adef 2d281
Ox5a742cac1952010f c5aba200a635a7bed3ef 868194f 45b5a6a2647d6d6b289d2
0x01
Dual |sogeny Paraneters

1. Coefficients of u (x)

O0x0f Oeddb584a20aaac8f 1419ef dd02a5cca77b21led4cf ae78c49b5127d98bc5882
0x7115e60d44a58630417df 33dd45b8a546f a00b79f ea3b2bdc449694bade87c0a
Ox0b3f 3a6f 3c445¢c7dc1f91121275414e88c32f f 3f 367baledad4d75b7e7b94b65
O0x1eb31bb333d7048b87f 2b3d4ec76d69035927b41c30274368649c87c52e1ab30
0x552c886c2044153e280832264066cce2a7dall27dc9720e2a380e9d37049ac64
0x4504f 27908db2elf 5840b74ae42445298755d9493141f 5417c02f 04d47797dda
0x082c242cceleb19698a4f a30b5af f e64e5051c04ae8b52ch68d89ee85222e628
0x480473406add76cf 1d77661b3f f 506c038d9cdd5ad6elead1969430bb876d223
0x25f 47bb506f ba80c79d1763365f a9076d4c4ch6644f 73ed37918074397e88588
0x10f 13ed36eab593f a20817f 6bb70cac292e18d300498f 6642e35chdf 772f 0855
0x7d28329d695f b3305620f 83a58df 1531e89a43c7b3151d16f 3b60a8246c36ade

0x02c5ec8c42b16dc6409bdd2c7b4f f e9d65d7209e886badbd5f 865dec35e4ab4a
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Ox7f 4f 33cd50255537e6cdel5a4a327a5790c37e081802654b56c956434354e133
0x7d30431a121d9240c761998cf 83d228237e80c3ef 5¢7191ec9617208e0ab8cec
0x4d2a7d6609610cldeed56425a4615b92f 70a507e1079b2681d96a2b874cf 0630
0x74676df 60a9906901d1dc316c639f f 6ae0f cdb02b5571d4b83f c2eedcd2936a8
0x22f 8212219aca01410f 06eb234ed53bd5b8f be7c08652b8002bcdlea3cdae387
Ox7edb04449565d7c566b934a87f adade5515f 23bdalce25daalof f f 0c6a5ccc2f
0x106ef 71aa3aa34e8ecf 4c07a67d03f 0949d7d015ef 2c1e32eb698dd3bec5al8c
0x0017913eb705db126ac3172447bcd811a62744d505ad0eea94cf cf dde5ca7428
0x2cc793e6d3b592dcf 5472057a991f f 1a5ab43b4680bb34c0f 5f af f c5307827c1
Ox6daf ccOb16f 98300cddb5e0a7d7f f 04a0e73ca558c54461781d5a5cchleal0l122
Ox7e418891cf 222c021b0ae5f 5232b9¢c0dc8270d4925a13174a0f Oac5e7a4c8045
0x76553bd26f ecb019ead31142684789f ea7754c2dc9ab9197¢623f 45d60749058
0x693ef b3f 81086043656d81840902b6f 3a9a4b0e8f 2a5a5edf 5celc7f 50a3898e
0x46c630eac2b86d36f 18a061882b756917718a359f 44752a5caf 41be506788921
0x01dcfa01773628753bc6f 448acllbe8a3bf f a0011b9284967629h827e064f 614
0x08430b5b97d49b0938d1f 66ecb9d2043025c6eec624f 8f 02042b9621b2b5¢ch19
Ox66f 66a6669272d47d3eclef ea36ee01ld4a54ed50e9ec84475f 668a5a9850f 9be
0x539128823b5ef 3e87e901ab22f 06d518a9bad15f 5d375b49f e1e893ab38b1345
0x2bd01c49d6f ff 22¢c213a8688924c10bf 29269388a69a08d7f 326695b3c213931
Ox3f 7bealbaeccea3980201dc40d67c26db0e3b15b5al9b6cdac6ded477aa7l7acl
0x6e0a72d94867807f 7150f cb1233062f 911b46e2adlla3eac3c6c4c91e0f 4a3f a
0x5963f 3cc262253f 56f c103e50217e7e5b823ae8e1617f 9ellf 4c9c595f bb5bf 6
0x41440b6f e787777bc7b63af ac9f 4a38ddadcebc3d72f 8f c73835247ba05f 3ald

0x66d185401c1d2d0b84f cf 6758a6a985bf 9695651271c08f 4b69ce89175f b7b34
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0x2673f b8c65bc4f e41905381093429a2601c46a309c03077ca229bac7d6ecf 239
Ox1ce4d895ee601918a080de353633c82b75a3f 61e8247763767d146554dd2f 862
Ox18ef a6c72f a908347547a89028a44f 79f 22542baa588601f 2b3ed25a5e56d27c
0x53de362e2f 8f f 220f 8921620a71e8f aalaa57f 8886f chb6808f a3a5560570543
0x0dc29a73b97f 08aa8774911474e651130ed364e8d8cf f d4a80dee633aacecc4?
Ox4e7eb8584ae4de525389d1e9300f c4480b3d9c8a5a45ect be33311029d8f 6b99
Ox6c3cba4aa9229550f a82elcf aeed4b02f 2c0ch86f 79e0d412b8e32b00b7959d80
0x5a9d104ae585b94af 68eeb16b1349776b601f 97b7ce716701645b1a75b68dcf 3
0x754e014b5e87af 035b3d5f e6f b49f 4631e32549f 6341¢c6693¢c5172a6388e273e
0x6710d8265118e22eaceba09566c86f 642ab42da58c435083a353eaal2d866¢39
Ox6e88ac659cel46c369f 8b24c3a49f 8dca547827250cf 7963a455851cf c4f 8d22
0x0971eb5f 253356¢cd1f de9f b21f 4a4902aa5b8d804a2b57ba775dc130181lae2e8
2. Coefficients of v’'(x)

0x043c9b67cc5b16e167b55f 190db61e44d48d813a7112910f 10e3f d8da85d61d3
0x72046db07e0e7882f f 3f Of 38b54b45ca84153bed7a7f d1dd8f 6402e17c47966f
0x1593d97b65a070b6b3f 879f e3dc4dlef 03c0e781c997111d5¢c1748f 956f 1f f cO
0x54e5f ec076b8779338432bdc5a449e36823a0a7c905f d37f 232330b026a143a0
0x46328dd9bc336e0873abd453db472468393333f bf 2010c6ac283933216e98038
0x25d0c64deldf elc6d5f 5f 2d98ab637d8b39bcf 0d886a23dabac18c80d7eb03ce
0x3al75c46b2cd8e2b313dde2d5f 3097b78114a6295f 283cf 58a33844b0c8d8b34
Ox5cf 4e6f 745bdd61181a7d1b4db31dc4c30c84957f 63cdf 163bee5e466a7a8d38
0x639071c39b723eea51cf d870478331d60396b31f 39a593ebdd9b1eb543875283
Ox7ea8f 895dcd85f c6ch2b58793789bd9246e62f a7a8c7116936876f 4d8df f 869b

0x503818achb535bcaacf 8ad44a83c213a9ce83af 7¢937dc9b3e5b6ef edc0a7428c¢c
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0x0e815373920ec3chf 3f 8cae20d4389d367dc4398e01691244af 90edc3e6d42b8
0x7e4b23e1e0b739087f 77910cc635a92a3dc184a791400cbceae056¢19¢853815
0x145322201db4b5ec0a643229e07c0ab7c36e4274745689be2c19cf a8a702129d
Ox0f de79514935d9b40f 52e33429621a200acc092f 6e5dec14b49e73f 2f 59¢780d
0x37517ac5c04dc48145a9d6e14803b8ce9ch6a5d01c6f 0ad1lb04f f 3353d02d815
0x58ae96b8eef e9e80f 24d3b886932f e3c27aaea810f a1l89c702f 93987c8c97854
0x6f 6402c90f a379096d5f 436035bebc9d29302126e9b117887abf a7d4b3c5709a
0x01dbdf 2b9ec09a8def eb485cc16ea98d0d45c5b9877f f 16bd04c0110d2f 64961
0x53c51706af 523ab5b32291de6c6blee7c5chd0a5b317218f 917b12f f 38421452
O0x1b1051c7aec7d37a349208e3950b679d14e39f 979db4f cd7b50d7d27dc918650
0x1547e8d36262d5434cf b029cdd29385353124c3c35b1423c6ccalf 87910b305b
0x198ef e984ef c817835e28f 704d41e4583a1e2398f 7ce14045¢c4575d0445c6ece7
0x492276df e9588ee5cd9f 553d990f 377935d721822ecd0333ce2eb1d4324d539c
Ox77bad5319bacd5ed99e1905ce2ae89294ef a7eelf 74314e4095c618a4e580c9b
0x2chb3d532b8eac41c61b683f 7b02f eb9c2761f 8b4286a54c3c4b60dd8081a312e
0x37d189ea60443e2f ee9b7baB8a34ed79f f 3883dcef c06592836d2a9dd2ee3656e
0x79a80f 9a0e6b8ded17a3d6ecf 71eb565e3704c3543b77d70bca854345e880aba
0x47718530ef 8e8c75f 069ach2d9925¢5537908e220b28¢c8a2859b856f 46d5f 8db
Ox7dc518f 82b55a36b4f a084b05bf 21e3ef ce481d278a9f 5c6a49701e56dacOlec
0x340a318dad4b8d348a0838659672792a0f 00b7105881e6080a340f 708a9c7f 94
0x55f 04d9d8891636d4e9c808alf a95ad0dae7a8492257b20448023aad3203278e
0x39dc465d58259f 9f 70bb430d27e2f 0ab384a550e1259655443e14bdecbha85530
0x757385464cf f 265379aladf adf d6f 6a03f a8a2278761d4889ab097ef f 4dlac28

0x4d575654dbe39778857f 4e688cc657416ce524d54864ebe8995ba766ef a7caz2b
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Ox47adb6aecc1949f 2dc9f 01206cc23eb4a0c29585d475dd24dc463c5087809298
0x30d39e8b0c451a8f cf 3d2abab4b86f f a374265abbe77c5903db4clbe8cec7672
0x28cf 47b39112297f 0Odaeaa621f 8e777875adc26f 35decO0bad475c2eel48562b41
0x36199723cc59867e2e309f €9941¢cd33722c807bb2d0a06eeb41de93f 1b93f 2f 5
Ox5cdeblf 2eelc7d694bdd884chlc5c22de206684elcaf b8d3adb9a33ch85e19a2
0x0f 6e6b3f c54c2d25871011b1499bb0ef 015c6d0da802ae7eccf 1d8c3f b73856¢
0x0c1422c98b672414344a9c05492b926f 473f 05033b9f 85b8788b4bb9a080053c
0x19a8527de35d4f aach00184e0423962247319703a815eecf 355f 143c2¢c18f 17f
0x7812dc3313e6¢cf 093dad4617f 06062e8e8969d648df e6b5¢c331bccd58eb428383
0x61e537180c84c79elf d2d4f 9d386elc4f 0442247605b8d8904d122ee7ef 9f 7be
0x544d8621d05540576¢f c9b58a3dab19145332b88eb0b86f 4c15567¢c37205adf 9
Ox11lbe3ef 96e6e07556356b51e2479436d9966b7b083892b390caec22all7aa48e
0x205cda31289cf 75ab0759¢c14c43ch30f 7287969ea3dc0d5286a3853a4d403187
0x048d8f c6934f 4f 0a99f Of 2cc59010389e2a0b20d6909bf cf 8d7d0249f 360acdc
Ox42cecc6d9bdcab6d382e97f cead46a79c3eda2853091a8f 399a2252115bf 9a1454
0x0117d41b24f 2f 69cb3270b359c181607931f 62c56d070bbd14dc9e3f 9ab1432e
0x7c51564c66f 68e2ad4ce6eald68f 920f af a375376709c606c88a0ed44207aale
0x48f 25191f c8ac7d9f 21adf 6df 23b76ccbca9cb02b815acdbebf a3f 4eddc71b34
Ox4f c21a62c4688de70e28ad3d5956633f c9833bc7be09dc7bc500b7f aelelc9a8
Ox1f 23f 25be0912173c3ef 98e1c9990205a69d0bf 2303d201d27a5499247f 06789
0x3131495618a0ac4cbl1a702f 3f 8bab66c4f al066d0a74l1laf 3c92d5¢c246edd579
0x0d93f e40f aa53913638e497328a1b47603cb062c7af c9e96278603f 29f d11f d4
0x6b348bc59e€984c91d696d1e3c3cf ae44021f 06f 74798c787¢355437f b696093d

Ox65af 00e73043edch479620c8b48098b89809d577a4071c8e33e8678829138b8a
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0x5e62f f b032b2ddb06591f 86a46al8ef f d5d6ecf 3f 129bb2bacf d51a3739a98b6
0x62c974ef 3593f c86f 7d78883b8727a2f 7359a282cbc0196948e7a793e60celal
0x204d708e3f 500aad64283f 753e7d9bab976aad42ad4calce5e9d2264639e8b1110
0x0a90f 0059da81a012e9d0a756809f ab2ce61ch45965d4d1513a06227783ee4ea
0x39f a55971c9e833f 61139¢c39e243d40869f d7e8aldl7eede7719dd2dd242766f
0x22677cle659caa324f 0c74a013921f acf 62d0d78f 273563145cclddccf ccd421
0x3468cf 6df 7e93f 7f f 1f eldd7e180a89dec3ed4f 72843b4ea8a8d780011a245b2
0x68f 75a0e2210f 52a90704ed5f 511918d1f 6bcf cd26b462cc4975252369db6e9d
0x6220c0699696e9bcab0f e3a80d437519bd2bdf 3caef 665e106b2dd47585dddof
0x553ad47b129f b347992b576479b0a89f 8d71f 1196f 83e5eaab5f 533aldd6f 6d7
0x239aef 387e116ec8730f al5af 053485ca707650d9f 8917a75f 22acf 6213197df
3. Coefficients of w (x)

Ox6bd7f 1f c5dd51b7d832848c180f 019bcbdb101d4b3435230a79cc4f 95c35el15e
0x17413bb3ee505184a504e14419b8d7c8517a0d268f 65b0d7f 5b0ba68d6166dd0
0x47f 4471beed06e5e2b6d5569¢20e30346bdba2921d9676603c58e55431572f 90
Ox2af 7eaaf d04f 6910a5b01cdb0c27dca09487f 1cd1116b38db34563e7b0b414eb
0x57f 0a593459732eef 11d2e2f 7085bf 9adf 534879ba56f 7af d17c4a40d3d3477b
0x4da04e912f 145¢8d1e5957e0a9e44cca83e74345b38583b70840bdf dbd0288ed
0x7cc9c3a51a3767d9d37c6652c349adc09bf e477d99f 249a2a7bc803c1c5f 39ed
0x425d7e58b8adf 87eebf 445b424ba308ee7880228921651995a7eab548180ad49
0x48156db5c99248234c09f 43f edf 509005943d3d5f 5d7422621617467b06d314f
0x0d837dbbdlaf 32d04e2699cb026399c1928472aala7f 0Oald3af d24bc9923456a
0x5b8806e0f 924e67c1f 207464a9d025758c078b43ddcOea9af €e9993641e5650be

0x29c91284e5d14939a6¢c9bc848908bd9odf 1f 8346¢c259bbd40f 3ed65182f 3a2f 39
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12 0x25550b0f 3bceef 18a6bf 4a46c45bf 1b92f 22a76d456bf df 19d07398c80b0f 946
13 0x495d289b1db16229d7d4630cbh65d52500256547401f 121a9b09f b8e82cf 01953
14 0x718c8c610ea7048a370eabf d9888c633ee31dd70f 8bcc58361962bb08619963e
15 0x55d8a5ceef 588ab52a07f a6047d6045550a5¢c52¢c91cc8b6b82eeb033c8cas57d
16 0x620b5a4974cc3395f 96b2a0f a9e6454202ef 2c00d82b0e6¢c534b3b1d20f 9a572
17 0x4991b763929b00241ala9a68e00e90c5df 087f 90b3352c0f 4d8094a51429524e
18 0x18b6b49c5650f b82e36e25f d4ebb6decf dd40b46c37425e6597c7444albbaf bde
19 0x6868305b4f 40654460aad63af 3cb9151ab67c775eaac5e5df 90d3aea58deelsdl
20 0x16bc90219a36063a22889db810730a8b719c267d538cd28f a7c0d04f 124c8580
21 0x3628f 9cf 1f be3eb559854e3b1c06a4cd6a26906b4e2d2e70616a493bba2dc574
22 0x64abcc6759f 1celab57d41el17c2633f 717064e35a7233a6682f 8cf 8e9538af ec
23 0x01
Appendi x H.  Poi nt Conpression

Poi nt conpression allows a shorter representation of affine points of
an elliptic curve by exploiting al gebraic rel ationshi ps between the
coordi nate val ues based on the defining equation of the curve in
guestion. Point deconpression refers to the reverse process, where
one tries and recover an affine point fromits conpressed
representation and information on the domain paraneters of the curve.
Consequent |y, point conpression foll owed by point deconpression is
the identity map.

The description bel ow makes use of an auxiliary function (the parity
function), which we first define for prinme fields G-(p), with p odd,
and then extend to all fields G-(qg), where q is an odd prime power.
We assune each finite field to be unanbi guously defined and known
from cont ext.

Let y be a nonzero elenment of G-(q). If g:=p is an odd prinme nunber,
y and p-y can be uniquely represented as integers in the interval

[1, p-1] and have odd sum p. Consequently, one can distinguish y from
-y via the parity of this representation, i.e., via par(y):=y (nod

2). If gq:=p™m where p is an odd prime nunber and where n»0, both y
and -y can be uniquely represented as vectors of length m wth
coefficients in GF(p) (see Appendix B.2). In this case, the |eftnost
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nonzero coordinate values of y and -y are in the sane position and
have representations in [1,p-1] with different parity. As a result,
one can distinguish y from-y via the parity of the representation of
this coordinate value. This extends the definition of the parity
function to any odd-size field GF(qg), where one defines par(0):=0.
The val ue of the parity function is commonly called the parity bit.

H. 1. Point Conpression for Wierstrass Curves

If P.=(X, Y) is an affine point of the Wierstrass curve W{a, b}
defined over the field G-(q), then sois -P.=(X, -Y). Since the
defini ng equation YA2=X"3+a*X+b has at nost two solutions with fixed
X-val ue, one can represent P by its X-coordinate and one bit of
information that allows one to distinguish Pfrom-P, i.e., one can
represent P as the ordered pair conmpr(P):=(X, par(Y)). If Pis a
poi nt of order two, one can uniquely represent P by its X-coordinate
al one, since Y=0 and has fixed parity. Conversely, given the ordered
pair (X, t), where X is an elenent of G-(qg) and where t=0 or t=1, and
t he domai n paraneters of the curve W{a, b}, one can use the defining
equation of the curve to try and determ ne candi date val ues for the
Y-coordi nate given X, by solving the quadratic equation Y*2: =al pha,
wher e al pha: =X"3+a*X+b. If alpha is not a square in G~(q), this
equation does not have a solution in G-(q) and the ordered pair (X

t) does not correspond to a point of this curve. Oherw se, there
are two solutions, viz. Y=sqrt(alpha) and -Y. |If alpha is a nonzero
el enent of GF(q), one can uniquely recover the Y-coordinate for which
par(Y):=t and, thereby, the point P.=(X, Y). This is also the case
if al pha=0 and t=0, in which case Y=0 and the point P has order two.
However, if alpha=0 and t=1, the ordered pair (X, t) does not
correspond to the outcone of the point conpression function.

NOTE: the procedure above corrects an error in the point
deconpressi on procedure for Wierstrass curves defined over the prine
field G-(p) of [SECl], which erroneously converts a purported
conpressed point for which al pha=0 and t=1 (in the notation above),
to the ordered pair (O,p).

We extend the definition of the point conpression function to al
points of the curve W{a, b}, by associating the (non-affine) point at
infinity Owith any ordered pair conpr(O:=(X, 0), where X is any

el ement of GF(q) for which al pha: =X*3+a*X+b is not a square in G~(qQ),
and recover this point accordingly. 1In this case, the point at
infinity O can be represented by any ordered pair (X 0) of elenents
of G-(q) for which X"3+a*X+b is not a square in GF(q). Note that
this ordered pair does not satisfy the defining equation of the curve
in question. An application may fix a specific suitable value of X
or choose nultiple such values and use this to encode additonal
information. Further details are out of scope.
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H 2. Point Conpression for Montgonmery Curves

If P.=(u, v) is an affine point of the Montgonmery curve M{A, B}
defined over the field G-(q), then so is -P:.=(u, -v). Since the
defini ng equati on B*v"2=u"3+A*u”2+u has at nobst two solutions with
fixed u-value, one can represent P by its u-coordinate and one bit of
information that allows one to distinguish Pfrom-P, i.e., one can
represent P as the ordered pair conmpr(P):=(u, par(v)). If Pis a
poi nt of order two, one can uniquely represent P by its u-coordinate
al one, since v=0 and has fixed parity. Conversely, given the ordered
pair (u, t), where uis an elenent of G-(g) and where t=0 or t=1, and
t he domai n paraneters of the curve M{A B}, one can use the defining
equation of the curve to try and determ ne candi date val ues for the
v-coordi nate given u, by solving the quadratic equation v~2:=al pha,
wher e al pha: =(u*"3+A*u”2+u)/B. |If alpha is not a square in G-(q),
this equation does not have a solution in GF(q) and the ordered pair
(u, t) does not correspond to a point of this curve. Oherw se,
there are two solutions, viz. v=sqgrt(alpha) and -v. |If alphais a
nonzero el enent of GF(qg), one can uniquely recover the v-coordi nate
for which par(v):=t and, thereby, the affine point P:=(u, v). This
is also the case if alpha=0 and t=0, in which case v=0 and the point
P has order two. However, if alpha=0 and t=1, the ordered pair (u,
t) does not correspond to the outcone of the point conpression
function.

We extend the definition of the point conpression function to al
points of the curve M{A B}, by associating the (non-affine) point at
infinity Owith the ordered pair conpr(O:=(0,1) and recover this
poi nt accordingly. (Note that this corresponds to the case al pha=0
and t=1 above.) The point at infinity O can be represented by the
ordered pair (0, 1) of elenments of GF(q). Note that this ordered
pair does not satisfy the defining equation of the curve in question.

H 3. Point Conpression for Tw sted Edwards Curves

If P:=(x, y) is an affine point of the twi sted Edwards curve E {a, d}
defined over the field G-(qg), then so is -P:=(-x, y). Since the
defini ng equation a*x"2+y"2=1+d*x"2*y~2 has at nobst two sol utions
with fixed y-value, one can represent P by its y-coordi nate and one
bit of information that all ows one to distinguish Pfrom-P, i.e.,
one can represent P as the ordered pair conpr(P):=(par(x), y). If P
is a point of orde