RKWard plugin development with the
rkwarddev package

m.eik michalke

December 11, 2011

Writing plugins for RKWard means writing at least two XML files (a
GUI description and a plugin map), one JavaScript file (to create the R
code), maybe a help file (again in XML), and for plugins who should be
distributed, a DESCRIPTION file. Furtermore, all of these files need to
be in a certain directory structure.

The rkwarddev package aims to simplify this, by enabling you to fulfill
all the listed tasks in just one R script.

1 About the package

You might ask why you should write R scripts to generate plugins, if you could just
directly write the XML and JavaScript files. First of all, you don’t have to use this
package at all, it’s totally fine to code your plugins however you like. The main reason
why I wrote this package is that I like to really concentrate on what I’'m doing, so this
is my attempt to avoid the need to switch between three different languages all the
time. I wanted to be able to constantly “think in R* while working on a plugin. As
a side effect, a lot of useful automation was implemented, and using this package will
definitely save you quite some amount of typing.

2 Before we start

It is important to undertsand that while rkwarddev can help you to make designing
new plugins much easier, you still need to know how the generated XML and JavaScript
files work and interact. That is, if you didn’t yet read the Introduction to Writing
Plugins for RKWard," please do so before you start working with this package. Once
you’re sure you understand how plugins in RKWard actually work, just come back here.

Thttp://rkward.sourceforge.net/documents/devel/plugins/index.html



3 Ingredients

If you look at the contents of the package, you might feel a little lost because of the
number of functions. So let’s first see that there’s actually some order in the chaos.

Most functions start with the prefix rk. to indicate that they somehow belong
to RKWard (we’ll get to the exceptions later). After that, many names have another
abbreviation by which they can roughly be classified into their specific "area“ of plugin
development:

e rk.XML.*(): XML code for GUI description (and plugin maps)
e rk.JS.x(): JavaScript code
e rk.rkh.*(): XML code for help pages

In short, you should find a rk.XML. * () equivalent to every XML tag explained in the
Introduction to Writing Plugins for RKWard,? e.g. rk.XML.dropdown() to generate
a <dropdown> menu node. There are a few functions for JavaScript generation which
fall out of this scheme. That is because firstly they should be intuitively to use just
like their JavaScript equivalent (like echo()), and secondly they are likely to be used
very often in a script, so short names seemed to be a blessing here (like id() or qp()).

Adding to that, there are some special functions, which will all be explained later,
but here’s the list, roughly ordered by the development stage they’re used for:

e rk.paste.JS(): Paste JavaScript code from R objects
e rk.XML.plugin(): Combine XML objects into one plugin GUI object

e rk.JS.scan(): Scan a GUI XML file (or R object) and generate JavaScript code
(define all relevant variables)

e rk.JS.saveobj(): Scan a GUI XML file (or R object) and generate JavaScript
code (save result objects)

e rk.JS.doc(): Combine JavaScript parts into one plugin JavaScript file object

e rk.rkh.scan(): Scan a GUI XML file (or R object) and generate a help page
skeleton

e rk.rkh.doc(): Combine XML objects into one help page object
e rk.testsuite.doc(): Paste a testsuite skeleton

e rk.XML.pluginmap(): Combine XML objects into one plugin map object

e rk.plugin.skeleton(): Generate actual plugin files from the plugin GUI, JavaScript,

help page, testsuite and plugin map objects (i. e., put all of the above together)

e rk.build.plugin(): Compress the generated files into an installable R package
for distribution

*http://rkward.sourceforge.net/documents/devel /plugins/index.html



